CHAPTER 1

GENERALIZED ANALYSIS OF PROMOTERS (GAP): A METHOD FOR DNA SEQUENCE DESCRIPTION

R. Romero Zaliz^a, I. Zwir^b and E. Ruspini^c

^aDepartment of Computer Science Facultad de CienciasExactas y Naturales Universidad of Buenos Aires Buenos Aires, Argentina E-mail: rromero@dc.uba.ar

^bDepartment of Molecular Microbiology Washington University School of Medicine St. Louis, Missouri, U.S.A. Email:zwir@borcim.wustl.edu ^a

> ^cArtificial Intelligence Center SRI International Menlo Park, California, U.S.A. E-mail: ruspini@ai.sri.com

Recent advances in the accessibility of databases containing representations of complex objects—exemplified by repositories of time-series data, information about biological macromolecules, or knowledge about metabolic pathways—have not been matched by availability of tools that facilitate the retrieval of objects of particular interest while aiding to understand their structure and relations. In applications such as the analysis of DNA sequences, on the other hand, requirements to retrieve objects on the basic of qualitative characteristics are poorly met by descriptions that emphasize precision and detail rather than structural features.

This paper presents a method for identification of interesting qualitative features in biological sequences. Our approach relies on a generalized clustering methodology, where the features being sought correspond to the solutions of a multivariable, multiobjective optimization problem and generally correspond to fuzzy subsets of the object being represented. Foremost among the optimization objectives being considered are measures of the degree by which features resemble prototypical

^aCorresponding author.

structures deemed to be interesting by database users. Other objectives include feature distance and, in some cases, performance criteria related to domain-specific constraints.

Genetic-algorithm methods are employed to solve the multiobjective optimization problem. These optimization algorithms discover candidate features as subsets of the object being described that lie in the set of all Pareto-optimal solutions—of that problem. These candidate features are then inter-related employing domain-specific relations of interest to the end users.

We present results of the application of a method termed Generalized Analysis of Promoter (GAP) to identify one of the most important factors involved in the gene regulation problem in bacteria, which is crucial for detecting regulatory behaviors or genetic pathways as well as gene transcription: the RNA polymerase motif. The RNA polymerase or promoter motif presents vague submotifs linked by different distances, thus, making its recognition in DNA sequences difficult. Moreover, multiple promoter motifs can be present in the same regulatory regions and all of them can be potential candidates until experimental mutagenesis is performed. GAP is available for public use in http://soar-tools.wustl.edu.

1. Introduction

One of the big challenges of the post genomic era is determining when, where and for how long genes are turned on or off^4 . Gene expression is determined by protein-protein interactions among regulatory proteins and with RNA polymerase, and protein-DNA interactions of these trans-acting factors with cis-acting DNA sequences in the promoters of regulated genes 22,11 . Therefore, identifying these protein-DNA interactions, by means of those DNA motifs that characterize the regulatory factors that operate in the transcription of a gene^{1,23}, becomes crucial for determining which genes participate in a regulation process, how they behave and how are they connected to build genetic networks. The RNA polymerase or promoter is an enzyme that transcribes a gene or recruits other regulatory factors to interact with it, producing cooperative regulations ²². Different computational methods have been applied to discover promoter motifs or patterns 5,14,16,13,1 . However, most of them failed to provide accurate predictions in prokaryotic promoters because of the variability of the pattern, which comprises more than one vague submotif and variable distances between them. Moreover, multiple occurrences of promoters in the same regulatory region of one gene can be found (e.g. different promoters can be used for gene activation and repression, or can interact with different regulatory factors from the same regulatory pathway 19,7).

 $\mathbf{2}$

This paper presents a method termed Generalized Analysis of Promoters (GAP), which applies generalized clustering techniques ^{29,35} to the discovery of qualitative features in complex biological sequences, particularly multiple promoters in bacterial genomes. The motivation for the development of this methodology is provided by requirements to search and interpret databases containing representations of this type of objects in terms that are close to the needs and experience of the users of those data-based descriptions. These qualitative features include both interesting substructures and interesting relations between those structures, where the notion of interestingness is provided by domain experts by means of abstract qualitative models or learned from available databases. The GAP method represents promoter features as fuzzy logic expressions with fuzzy predicates, whose membership functions are learned from probabilistic distributions 30,21,36 . The proposed method takes adventage of a new developed Multi-Objective Scatter Search (MOSS) algorithm to identify multiple promoters occurrences within genomic regulatory regions by optimizing multiple criteria that those features that describe promoters should satisfy. This methodology formalizes previous attempts to produce exhaustive searches of promoters¹, most of which emphasize the processing of detailed system measurements rather than that of qualitative features of direct meaning to users (called *perceptions* by Zadeh) 32 .

Therefore, this chapter is organized as follows: Section 2 describes the generalized clustering framework; Section 3 explines the problem of discoverying and describing bacterial promoters; Section 4 applies the GAP method to the promoter discovery problem in Escherichia coli (*E. coli*) genome; Section 5, shows the results obtained by the proposed method and its evaluation; and Section 6 summarizes the concluding remarks.

2. Generalized Clustering

The method presented in this paper belong to a family of techniques for the discovery of interesting structures in datasets by classification of its points into a finite number of fuzzy subsets, or *fuzzy clustering*. Fuzzy clustering methods were introduced by Ruspini²⁷ to provide a richer representation scheme, based on a flexible notion of partition, for the summarization of dataset structure, and to take advantage of the ability of continuous-analysis techniques to express and treat classification problems in a formal manner.

R. Romero Zaliz et al.

In Ruspini's original formulation the clustering problem was formulated as a continuous-variable optimization problem over the space of fuzzy partitions of the dataset. This original formulation of the clustering problem as an optimization problem has been largely retained in various extensions of the approach, which differ primarily on the nature of the functionals being optimized and on the constraints that the partition must satisfy³.

The original approach proposed by Ruspini, however, focused on the determination of the clustering as a whole, i.e., a family of fuzzy subsets of the dataset providing a disjoint, exhaustive partition of the set into interesting structures. Recent developments, however, have emphasized the determination of individual clusters as fuzzy subsets having certain optimal properties. From this perspective, a fuzzy clustering is a collection of optimal fuzzy clusters—that is, each cluster is optimal in some sense and the partition satisfies certain conditions—rather than an optimal partition—that is, the partition, as a whole, is optimal in the sense that it minimizes some predefined functional defining classification quality. Redirecting the focus of the clustering process to the isolation of individual subsets having certain desirable properties provides also a better foundation for the direct characterization of interesting structure while freeing the clustering process from the requirement that clusters be disjoint and that partitions be exhaustive.

In the context of image-processing applications, for example, features may correspond to certain interesting prototypical shapes. In these applications not every image element may belong to an interesting feature while some points might belong to more than one cluster (e.g., the intersection of two linear structures). It was, indeed, n the context of image-processing applications that Krishnapuram and Keller⁶ reformulated the fuzzy clustering problem so as to permit the sequential isolation of clusters. This methodology, called *possibilistic clustering*, does not rely, like previous approaches, on prior knowledge about the number of clusters while permitting to take full advantage of clustering methods based on the idea of *prototype*.

Prototype-based classification methods³ are based on the idea that a dataset could be represented, in a compact manner, by a number of prototypical points. The well-known fuzzy c-means method of Bezdek—the earliest fuzzy-clustering approach exploiting this idea—seeks to describe a dataset by a number of prototypical points lying in the same domain as the members of that dataset. Extensions of this basic idea based on generalization of the notion of prototypical structure in a variety of ways (e.g., as line or curve segments in some euclidean space) are the basis for methods that

seek to represent datasets in terms of structures that have been predefined as being of particular interest to those seeking to understand the underlying physical systems being studied. Generally speaking, however, these methods require that prototypical structures belong to certain restricted families of objects so as to exploit their structural properties (e.g., the linear structure of line segments or hyperplane patches).

The generalized clustering methodology presented in this paper belongs to this type of approaches, extending them by consideration of arbitrary definitions of interesting structures provided by users by users by means of a family of parameterized models $M = [M_{\alpha}]$ and a set of relations between them ^{28,35}. In addition to a variety of geometric structures, these models may also be described by means of structures (e.g., neural networks) learned from significant examples of the features being defined or in terms of very general constraints that features might satisfy to some degree (*soft* or *fuzzy* constraints). As is the case with possibilistic clustering methods, our approach is based on the formulation of the qualitative-feature identification problem in terms of the optimization of a continuous functional $Q(F, M_{\alpha})$ that measures the degree of matching between a fuzzy subset F of the dataset and some instantiation M_{α} of the family of interesting models²⁹.

Our approach recognizes, however, that simple reliance on optimization of a single performance index Q would typically result in the generation of a large number of features with small extent and poor generalization as it is usually easier to match smaller subsets of the dataset than significant portions of it. For this reason, it is also necessary to consider, in addition to measures Q of representation quality, additional criteria S gauging the size of the structure being represented. In addition, it may also be necessary to consider also application-specific criteria introduced to assure that the resulting features are valid and meaningful (e.g., constraints preventing selective picking of sample points so that they lie, for example, close to a line in sample space).

This multiobjective problem might be treated by aggregation of the multiple measures of feature desirability into a global measure of cluster quality ²⁸. A problem with this type of approach, which is close in spirit to minimum description length methods²⁶, is the requirement to provide a-priori relative weights to each one of the objectives being aggregated. It should be clear that assignment of larger weight to measures Q of quality representation would lead to small features with higher degrees of matching to models in the prototype families while, conversely, assigning higher weights

to measures S of cluster extent would tend to produce larger clusters albeit with poor modeling ability. Ideally, a family of optimization problems, each similar in character to the others but with different weights assigned to each of the aggregated objectives, should be solved so as to produce a full spectrum of candidate clusters.

Rather than following such a path—involving the solution of multiple problems—our approach relies, instead, on a reformulation of the generalized clustering problem as a multiobjective optimization problem involving several measures of cluster desirability²⁹. In this formulation, subsets of the dataset of potential interest are *locally optimal* in the *Pareto sense*. i.e., they are *locally nondominated* solutions of the optimization problem.^b. Locally nondominated solutions of a multiobjective optimization problem are those points in feature space such that their neighbors do not have better objective values for all objectives while being strictly superior in at least one of them. (i.e., a better value, for a neighbor, of some objective implies a lower value of another). The set of these solutions is called the local Pareto-optimal or local effective frontier. We employ a multiobjective genetic algorithm (MGA)²⁹ based on an extension of methods originally proposed by Marti and Laguna^{18,12} to solve this problem. This method is particularly an attractive tools to solve such complex optimization problems because of their generality and their ability, stemming from application of multimodal optimization procedures, to isolate local optima.

3. Problem: Discovering Promoters in DNA Sequences

Biological sequences, such as DNA or protein sequences, are a good example of the type of complex objects that maybe described in terms of meaningful structural patterns. Availability of tools to discover these structures and to annotate the sequences on the basis of those discoveries would greatly improve the usefulness of these repositories that currently rely on methods developed on the basis of computational efficiency and representation accuracy rather than on terms of structural and functional properties deemed to be important by molecular biologists.

An important example of biological sequences are prokaryotic promoter data gathered and analyzed by many compilations ^{8,5,17} that reveal the presence of two well conserved sequences or submotifs separated by variable distances and a less conserved sequence. The variability of the distance

 $\mathbf{6}$

^bThe notions of proximity and neighborhood in feature space is application dependent

between submotifs and their fuzziness, in the sense that they present several mismatches, hinder the existence of a clear model of prokaryotic corepromoters. The most representative promoters in *E. coli* (i.e. σ^{70} subunits) are described by the following conserved patterns:

- (1) TTGACA: This pattern is an hexanucleotide conserved sequence whose middle nucleotide is located approximately 35 pair of bases upstream of the transcription start site. The consensus sequence for this pattern is TTGACA and the nucleotides reported in ¹⁷ reveal the following nucleotide distribution: $T_{69}T_{79}G_{61}A_{56}C_{54}A_{54}$, where for instance the first T is the most seen nucleotide in the first position of the pattern and is present in 69 % of the cases. This pattern is often called -35 region.
- (2) TATAAT: This pattern is also an hexanucleotide conserved sequence, whose middle nucleotide is located approximately 10 pair of bases upstream of the transcription start site. The consensus sequence is TATAAT and the nucleotide distribution in this pattern is $T_{77}A_{76}T_{60}A_{61}A_{56}T_{82}$, which is often called -10 region¹⁷.
- (3) CAP Signal: In general, a pyrimidine (C or T) followed by a purine (A or G) compose the CAP Signal. This signal constitutes the transcription start site (TSS) of a gene.
- (4) Distance(TTGACA, TATAAT). The distance between the TTGACA and TATAAT consensus submotifs follows a data distribution between 15 and 21 pair of bases. This distance is critical in holding the two sites at the appropriate distance for the geometry of RNA polymerase ⁸.

The identification of the former RNA polymerase or promoters sites becomes crucial to detect gene activation or repression, by the way in which such promoters interact with different regulatory proteins (e.g. overlapping suggest repression and distances of approximately 40 base pairs suggest typical activation). Moreover, combining the promoter sites with other regulatory sites ³⁷ can reveal different types of regulation, harboring RNA polymerase alone, RNA polymerase recruiting other regulatory protein, or cooperative regulations among more than one regulator²². Different methods have been used to identify promoters ^{9,16,13,5}, but several failed to perform accurate predictions because of their lack of flexibility, by using crisp instead of fuzzy models for the submotifs (e.g., TATAAT or TTGACA ²⁴), or restricting distances between submotifs to fixed values (e.g., 17 base pairs¹). The vagueness of the compound promoter motifs and the uncertainty of identifying which of those predicted sites correspond to a functional promoter can be completely solved only by performing mutagen-

esis experiments²². Thus more accurate and interpretable predictions would be useful in order to reduce the experiment costs and ease the researchers work.

4. Biological Sequence Description Methods

In this paper we present results of the application of GAP to the discovery of interesting qualitative features in DNA sequences based inthose ideas discussed in Section 2. The notion of interesting feature is formally defined by means of a family of parameterized models $M = \{M_{\alpha}\}$ specified by domain experts²⁹ who are interested in finding patterns such as epoch descriptors of individual or multiple DNA sequences. These idealized versions of prototypical models are the basis for a characterization of clusters as cohesive sets that is more general than their customary interpretation as "subsets of close points." To address the promoter prediction problem we take advantage of the ability of representing imprecise and incomplete motifs, the fuzzy sets representations flexibility and interpretability, and the multi-objective genetic algorithms ability to obtain optimal solutions using different criteria.

Our proposed method GAP represents each promoter submotif (i.e., -10 and -35 regions and the distance that separates them) as fuzzy models, whose membership functions are learned from data distributions^{15,21}. In addition, as a generalized clustering method, GAP considers the quality of matching with each promoter submotif model (Q), as well as the size of the promoter extend (S), by means of the distance between submotifs, as the *multiple objectives* to be optimized. To do so, we used a Multi-objective Scatter Search (MOSS) optimitation algorithm 18,12 , which obtains a set of multiple and optimal promoter descriptions for each promoter region. Moreover, the former matching is also considered by MOSS as a multi*modal* problem, since there is more than one solution for each region. GAP, by using MOSS, overcomes other methods used for DNA motif discovery, such as Consensus/Patser based on weight probabilistic matrices (see Section 5), and provides the desired trade-off between accurate and interpretable solutions, which becomes particurary desirable for the end users. The extension of the original Scatter Search (SS) heuristic ¹⁸ uses the DNA regions where promoters should be detected as inputs and finds all optimal relationships among promoter submotifs and distance models. In order to extend the original SS algorithm to a multi-objective environment we need

to introduce some concepts^{10,25}:

A multi-objective optimization problem is defined as:

$$\begin{aligned} &Maximize \ Q_m(x, M_{\alpha}), &m = 1, 2, \dots, |M|; \\ &subject \ to \ g_j(x) \ge 0, &j_g = 1, 2, \dots, J; \\ &h_k(x) = 0, &k = 1, 2, \dots, K; \\ &x_i^{(L)} \le x_i \le x_i^{(U)}, \ i = 1, 2, \dots, n. \end{aligned}$$

where M_{α} is a generalized clustering model, |M| corresponds to the number of models and Q_m the objectives to optimize, J to the number of inequality constraints, K to the number of equality constraints and finally n is the number of decision variables. The last set of constraints restrict each decision variable x_i to take a value within a lower $x_i^{(L)}$ and an upper $x_i^{(U)}$ bound. Specifically, we consider the following instantiations:

- |M| = 3. We have three models: M_{α}^1 and M_{α}^2 are the models for each of the boxes, TTGACA-box and TATAAT-box, respectively, and M_{α}^3 corresponds to the distance between these two boxes (recall Equations 1 and 2, and Figure 1).
- |Q| = 3. We have three objectives consisting of maximizing the degree of matching to the fuzzy models (fuzzy membership): $Q_1(x, M_{\alpha}^1), Q_2(x, M_{\alpha}^2)$ and $Q_3(x, M_{\alpha}^3)$
- J = 1. We have just one constraint g_1 : the distance between boxes can not be less than 15 and no more than 21 pair of bases.
- K = 0. No equality constraints needed.
- Only valid solutions are kept in each generation.
- The boxes can not be located outside the sequence searched, that is, it can not start at negative positions or grater than the length of the query sequence.

Definition 1: A solution x is said to dominate solution $y \ (x \prec y)$, if both conditions 1 and 2 are true: (1) The solution x is no worse than yin all objectives: $f_i(x) \not > f_i(y)$ for all i = 1, 2, ..., M; (2) The solution xis strictly better than y in at least one objective: $f_j(x) \triangleleft f_j(y)$ for at least one $i \in \{1, 2, ..., M\}$. If x dominates the solution y it is also customary to write that x is *nondominated* by y.

In order to code the algorithm, three different models were developed. Both submotif models were implemented by using their nucleotide consensus frequency as discrete fuzzy sets, whose membership function has

been learned from distributions¹⁵ The first model corresponding to the TATAAT-box was formulated as:

$$M^{1}_{\alpha} = \mu_{tataat}(x) = \mu^{1}_{1}(x_{1}) \cup \dots \cup \mu^{1}_{6}(x)$$
(1)

where the fuzzy discrete set corresponding to the first nucleotide of the submotif $T_{0.77}A_{0.76}T_{0.60}A_{0.61}A_{0.56}T_{0.82}$ was defined as $\mu_1^1(x_1) = A/0.08 + T/0.77 + G/0.12 + C/0.05$, and the other fuzzy sets corresponding to positions 2-6 were calculated in a similar way accordingly to data distributions from¹⁷. The second model corresponding to the TTGACA-box was described as:

$$M_{\alpha}^{2} = \mu_{ttgaca}(x) = \mu_{1}^{2}(x_{1}) \cup \dots \cup \mu_{6}^{2}(x)$$
⁽²⁾

where the fuzzy crisp set corresponding to the first nucleotide of the submotif $T_{0.69}T_{0.79}G_{0.61}A_{0.56}C_{0.54}A_{0.54}$ was defined as $\mu_1^2(x) = A/0.12+T/0.69+$ G/0.13+C/0.06 and the other fuzzy sets corresponding to positions 2-6 were calculated in a similar way accordingly to data distributions from¹⁷. The union operation corresponds to fuzzy set operations^{21,15}. The third model, i.e., the distance between the previous submotifs, was built as a fuzzy set, whose triangular membership function M^3_{α} (see Figure 1) was learned from data distributions⁵ centered in 17, where the best value (one) is achieved. Therefore, the objective functions Q_m correspond to the membership to the former fuzzy models M_{α} .

Fig. 1. Graphical representation of M_{α}^3

Combination Operator and Local Search. We used a block representation to code each individual, where each block corresponds to one of the promoter submotifs (i.e., TATAAT-box or TTGACA-box). Particularly, each block was represented by two integers, where the first number corresponds

10

to the starting point of the submotif, and the second one represents the size of the box (see Figure 2). The combination process was implemented

Phenotype

ttgaca	tataat
gtttatttaatgtt	tacccccataaccacataatcgcgttacact
\uparrow	\uparrow
char 6	char 29

Genotype

Gen 0	Gen 1	
[(6,6)]	[(29,6)]	
$f_1 = 0.578595$	$f_2 = 0.800000$	$f_3 = 1.000000$

as a one-point combine operator, where the point is always located between both blocks. For example, given chromosomes with two blocks A and B, and parents $P = A_1B_1$ and $P' = A_2B_2$, the corresponding siblings would be $S = A_1B_2$ and $S' = A_2B_1$. The *local search* was implemented as a search for nondominated solutions in a certain neighborhood. For example, a local search performed over the chromosome space involves a specified number of nucleotides located on the left or right sides of the blocks composing the chromosome. The selection process considers that a new mutated chromosome that dominates one of its parent will replace it, but if it becomes dominated by its ancestors no modification is performed. Otherwise, if the new individual is not dominated by the nondominated population found so far, it replaces its father only if it is located in a less crowded region (see Figure 3).

Algorithm. We modified the original SS algorithm to allow multipleobjective solutions by adding the nondominance criterion to the solution ranking¹⁰. Thus, nondominated solutions were added to the set in any order, but dominated solutions were only added if no more nondominated solutions could be found. In addition to maintaining a good set of nondominated solutions, and to avoid one of the most common problems of multi-objective algorithms such as multi-modality¹⁰, we also kept track of the diversity of the available solutions through all generations. Finally, the initial populations were created randomly and unfeasible solutions corresponding to out of distance ranges between promoter submotifs (g_1) were

R. Romero Zaliz et al.

checked at each generation. Figure 4 clearly illustrates the MOSS algorithm proposed in GAP.

1: Randomly select which block g in the representation of the individual c to apply
local search.
2: Randomly select a number n in $[-neighbor, neighbor]$ and move the block g, n
nucleotides. Notice that it can be moved upstream or downstream. Resulting block
will be g' and resulting individual will be called c' .
3: if c' meets the restrictions then
4: if c' dominates c then
5: Replace c with c'
6: end if
7: if c' does not dominate c and c' is not dominated by c and c' is not dominated
by any solution in the Non-Dominated set then
8: Replace c with c' if $crowd(c') < crowd(c)$.
9: end if
10: end if

Fig. 3. Local search

1:	Start with $P = \emptyset$. Use the generation method to build a solution and the local
	search method to improve it. If $x \notin P$ then add x to P, else, reject x. Repeat until
	P has the user specified size.
2:	Create a reference set $RefSet$ with $b/2$ nondominated solutions of P and $b/2$ solu-
	tions of P more diverse from the other $b/2.$ If there are not enough nondominated
	solutions to fill the $b/2$, complete the set with dominated solutions.
3:	$NewSolution \leftarrow \texttt{true}$
4:	while Exists a Solution not yet explored (NewSolution = true) do
5:	$NewSolution \leftarrow \texttt{false}$
6:	Generate subsets of $RefSet$ where there is at least one nondominated solution
	in each one.
7:	Generate an empty subset N to store nondominated solutions.
8:	while subset to examine do
9:	Select a subset and mark it as examined.
10:	Apply combination operators to the solutions in the set.
11:	Apply local search to each new solution x found after the combination process
	as explained in Figure 3 and name it x^b .
12:	if x^b is nondominated by any $x \in N$ and $x^b \notin N$ then
13:	Add x^b to N .
14:	end if
15:	end while
16:	Add solutions $y \in N$ to P if there are no solution $z \in P$ that dominates y.
16:	$NewSolution \leftarrow \texttt{true}.$
17:	end while

Fig. 4. MOSS algorithm

5. Experimental Algorithm Evaluation

The GAP method was applied to a set of known promoter sequences reported in⁵. In this work 261 promoter regions and 68 the alternative solutions (multiple promoters) defined in⁵ for the corresponding sequences (totalizing 329 regions) constituted the input of the method.

To evaluate the performance of GAP, we first compare the obtained results with the ones retrived by a typical DNA sequence analysis method, the Consensus/Patser ¹⁴. Then, we compare the ability of MOSS with the other two Multiobjective Evolutionary Algorithms (MOEAs), i.e., the Strength Pareto Evolutionary Algorithm (SPEA)³³ and the $(\mu + \lambda)$ Multi-Objective Evolutionary Algorithm (MuLambda)²⁰.

All of the former MOEA algorithms share the same following properties:

- They store optimal solutions found during the search in an external set.
- They work with the concept of Pareto dominance to assign fitness values to the individuals of the population.

Particularly, SPEA is a well known algorithm that have some special features $^{33},$ including:

- The combination of above techniques in a single algorithm.
- The determination of the fitness value of an individual by using the solutions stored in the external population, where dominance from the current population becomes irrelevant.
- All individuals of the external set participate in the selection procedure.
- A niching method is given to preserve diversity in the population. This method is based on Pareto optimality and does not require a distance parameter (e.g., the niche ratio in a *sharing* function¹⁰).

MuLambda is a relative new algorithm with a very different design from other Pareto approaches. This algorithm has the following characteristics²⁰:

- It does not use any information from the dominated individuals of the population. Only nondominated individuals are kept from generation to generation.
- The population size is variable.
- It makes clustering to reduce the number of nondominated solutions stored without destroying the features of the optimal Pareto front.

As we explained earlier, the MOSS approach has the following proper-

ties:

14

- The local search is used to improve those solutions found during the execution of the algorithm.
- The diversity of the solutions is kept by including in every generation a set of diverse solutions into the current population.

To compare the results obtained from the former three algorithms, we use the same objective functions described in Section 4 and execute these algorithms 20 times with different seeds for each input sequence. A promoter is said to be found if it appears in, at least, one of the execution result sets. The parameters used in the experiments are listed in Table 1.

Parameter	Value
Number of generations	200
RefSet	16
Non-Dominated population size	300

Table 1. Parameters	for	algorithms
---------------------	-----	------------

Our method overcomes Consensus/Patser¹⁴ by detecting te 93.1 % of the available promoters, while this method, based on weight matrices, identify the 74 %. Moreover, GAP, by using MOSS also overcomes the other MOEA algorithms as it is illustrated in Table 2.

	Original	Alternative	%originals	%alternatives	Total	%total
MOSS	243	59	93.10%	86.76%	302	91.79%
SPEA	217	43	83.14%	63.24%	260	79.03%
$(\mu + \lambda)$ GA	223	52	85.44%	76.47%	275	83.59%

Table 2. Results with different Multi-Objective Genetic Algorithms for all sequences. The *Original* column indicates the number of conserved promoter locations reported in the literature. The *Alternative* column indicates alternative locations also reported in the literature

We should note that there exist more than one possible description for each promoter region, as it is illustrated in Figure 5 for the *Ada* gene reported in Harley & Reynolds compilation⁵. These alternative descriptions were also found by MOSS in a higher percentage than the other methods (86.76 %). The complete set of results is illustrated in the Appendix.

Fig. 5. Different solutions for the Ada sequence - Three different alternative locations for the preserved sequences were included in the final set of the MOSS method matching with the three alternatives reported in the literature

In addition to the number of promoters detected by using different MOEA algorithms, we use two other functions C^{34} and D (see Equations 3 and 4) to have a better understanding of each algorithm performance.

Definition 2: Let $X', X'' \subseteq X$ two set of decision vectors. The function C maps the ordered pairs (X', X'') to the [0, 1] interval:

$$C(X', X'') = \frac{|\{a'' \in X''; \exists a' \in X' : a' \leq a''\}|}{|X''|}$$
(3)

$$D(X', X'') = |\{a' \in X'; a'' \in X'' : a'' \nleq a' \land a' \neq a''\}|$$
(4)

The value C(X', X'') = 1 in the former definitions means that all solutions in X'' are equal to or dominated by the solutions in X'. Its opposite value, C(X', X'') = 0, represents the situation where no solutions in X'' are covered by any solutions in X'. Both C(X', X'') and C(X'', X') must be considered since C(X', X'') it is not necessary equal to 1 - C(X'', X'). Function D(X', X'') counts the number of individuals in X' that do not dominate X'' and are not found in X''.

We show in Table 3 the average results obtained for the comparisons among the MOEA algorithms. The first Table measures the C(X', X''), and the other measures the D(X', X''). This numbers were obtained by executing the algorithms 20 times with different seeds and calculating the average value for both functions and sequences.

C(X', X'')	MOSS	SPEA	$\mu + \lambda$	D(X', X'')	MOSS	SPEA	$\mu + \lambda$
MOSS	-	0.538	0.360	MOSS	-	14.204	12.977
SPEA	0.013	-	0.054	SPEA	0.170	-	0.876
$\mu + \lambda$	0.029	0.349	-	$\mu + \lambda$	1.066	2.284	-

Table 3. Sequence results

As we previously suggested, function D counts the number of nondominated individuals of an algorithm that were not found in the other two

MOEAs. The MOSS algorithm achieves the best value of D in all experiments, while SPEA and MuLambda present lower values. Moreover those results obtained by MOSS do not present much fluctuation between different sequences. MOSS leads the rankings followed by MuLambda and SPEA in the last position of the table. In addition, the diversity of solutions found by MOSS is considerably better than the other two algorithms (aproximately seven times better according to the D value). Finally, MOSS becomes the most robust algorithm by finding, in average, a specific promoter 16.81 times of the 20 runs. In contrast, SPEA obtains a promoter 6.48 times of the total 20 runs and and MuLambda 9.33 of the times.

6. Concluding Remarks

Generalized-clustering algorithms—solving multivariable, multiobjective, optimization problems—provide effective tools to identify interesting features that help to understand complex objects such as DNA sequences. We have proposed GAP, a promoter recognition method that was tested by predicting *E. coli* promoters. This method combines the advantages of feature representation based on fuzzy sets and the searching abilities of multiobjective genetic algorithms to obtain accurate as well as interpretable solutions. Particularly, these kinds of solutions are the most useful ones for the end users. That is, allows to detect multiple occurrences of promoters, sheding light on different putative transcription start sites. The ability of finding multiple promoters becomes more useful when the whole intergenic regions are considered, allowing to predict distinct regulatory activities, harboring activation or repression. The present approach can be extended to identify other DNA motifs, which are also conected by variable distances, such as binding sites of transcriptional regulators (e.g., direct or inverted repeats). Therefore, by combining multiple and heterogeneous DNA motifs (e.g., promoters, binding sites, etc.), we can obtain different descriptions of the cis-acting regions and, thus, different regulatory environments. The present implementation of GAP is available for academic use in the SOAR-TOOLS web site (http://soar-tools.wustl.edu) and will be updated soon with a new dataset from RegulonDB database³¹ (in process).

Appendix

Tables 4 through 7 illustrate the set of solutions found by GAP by considering the set of promoter examples published in ⁵. The last column of the tables indicates whether the GAP recognized the promoter or not by the

16

simbols \checkmark and \Box , respectively. The first column corresponds to the name of the sequence, the second column shows the beginning character position of the TTGACA-box, and the third column shows the character position where the TATAAT-box begins. These positions are those ones recognized by GAP. Only one result for each sequence is shown due to space limitations. The fourth column corresponds to the sequence itself with each of the boxes clearly depicted.

References

- A. M. Huerta and J. Collado-Vides. Sigma70 promoters in escherichia coli: specific transcription in dense regions of overlapping promoter-like signals. J Mol Biol., 333(2):261–278, 2003.
- 2. T. Bäck, D. Fogel, and Z. Michalewicz, Eds. 1997. *Handbook of Evolutionary Computation*. Institute of Physics Publishing and Oxford University Press.
- J. C. Bezdek. 1998. Fuzzy clustering. In Handbook of Fuzzy Computation. E. H. Ruspini, P. P. Bonissone, & W. Pedrycz, Eds.: F6.2. Institute of Physics Press.
- S. Brenner. Genomics. the end of the beginning. *Science*, 287(5461):2173– 2179, 2000.
- C. B. Harley and R. P. Reynolds. Analysis of e.coli promoter sequences. Nucleic Acids Research, 15(5):2343–2361, 1987.
- R. Krishnapuram and J. Keller. 1993. A possibilistic approach to clustering. IEEE Transactions on Fuzzy Systems, 98–110.
- B. Magasanik J. Collado-Vides, and J. D. Gralla. Control site location and transcriptional regulation in escherichia coli. *Microbiol Rev*, 55(3):371–394, 1991.
- D. K. Hawley and W. R. McClure. Compilation and analysis of escherichia coli promoter dna sequences. *Nucleic Acids Research*, 11(8):2237–2255, 1983.
- A. Ulyanov and G. Stormo. Multi-alphabet consensus algorithm for identification of low specificity protein-dna interactions. *Nucleic Acids Research*, 23(8):1434–1440, 1995.
- K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, 2001.
- M. Gibson and E. Mjolsness. Computational Modeling of Genetic and Biochemical Networks, chapter Modeling the Activity of Single Genes. The MIT Press, 2001.
- 12. D. E. Goldberg. Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley, 1989.
- L. Bailey and C. Elkan T. The value of prior knowledge in discovering motifs with meme. In *Proc Int Conf Intell Syst Mol Biol*, volume 3, pages 21–29, 1995.
- G. Z. Hertz and G. D. Stormo. Identifying dna and protein patterns with statistically significant alignments of multiple sequences. *Bioinformatics*, 15(7/8):563–577, 1999.

R. Romero Zaliz et al.

- G. J. Klir and T. A. Folger. *Fuzzy sets, uncertainty, and information*. Prentice Hall International, 1988.
- Lawrence CE et. al. Detecting subtle sequence signals: a gibbs sampling strategy for multiple alignment. Science, 262(5131):208–214, 1993.
- S. Lisser and H. Margalit. Compilation of e.coli mrna promoter sequences. Nucleic Acids Research, 21(7):1507–1516, 1993.
- R. Marti M. Laguna. Scatter Search: Methodology and Implementations in C. Kluwer Academic Publishers, Boston, 2003.
- C. Mouslim, T. Latifi and E. A. Groisman. Signal-dependent requirement for the co-activator protein rcsa in transcription of the rcsb-regulated ugd gene. *J Biol Chem*, 278(50):50588–95, 2003.
- C. Newton R. Sarker, K. Liang. A new multiobjective evolutionary algorithm. European Journal of Operational Research, 140:12–23, 2002.
- W. Pedrycz, P. P. Bonissone and E. H. Ruspini. Handbook of fuzzy computation. Institute of Physics, 1998.
- M. Ptashne and A. Gann. *Genes and signals*. Cold Spring Harbor Laboratory Press, 2002.
- M. G. Reese. Application of a time-delay neural network to promoter annotation in the drosophila melanogaster genome. *Computers & Chemistry*, 26(1):51–56, 2002.
- J. van Helden, B. André and J. Collado-Vides. A web site for the computational analysis of yeast regulatory sequences. *Yeast*, 16(2):177–187, 2000.
- D. Van Veldhuizen, C. Coello Coello, and G. Lamont. Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York, May 2002.
- 26. J. Rissanen. 1989. Stochastic Complexity in Statistical Inquiry. World Scientific.
- E. H. Ruspini. 1969. A new approach to clustering. Information and Control 15:1, 22–32.
- E. H. Ruspini and I. Zwir. 1999. Automated qualitative description of measurements. In Proc. 16th IEEE Instrumentation and Measurement Technology Conf.
- 29. E. H. Ruspini and I. Zwir. 2001. Automated Generation of Qualitative Representations of Complex Object by Hybrid Soft-computing Methods. In *Pattern Recognition: From Classical to Modern Approaches.* S. K. Pal & A. Pal, Eds. World Scientific Company, Singapore.
- E. H. Ruspini and I. Zwir. Automated generation of qualitative representations of complex object by hybrid soft-computing methods. In S. K. Pal and A. Pal, editors, *Lecture Notes in Pattern Recognition*. World Scientific Company, 2001.
- H. Salgado et al. Regulondb (version 3.2): transcriptional regulation and operon organisation in escherichia coli k-12. Nucleic Acids Research, 29:72– 74, 2001.
- 32. L. A. Zadeh. 2000. Outline of a Computational Theory of Perceptions Based on Computing with Words. In Soft Computing and Intelligent Systems: Theory and Applications. N.K. Sinha, M. M. Gupta & L. A. Zadeh, Eds.: 3–22.

Academic Press, San Diego.

- E. Zitzler and L. Thiele. An evolutionary algorithm for multiobjective optimization: The strength pareto approach. Technical Report 43, Gloriastrasse 35, CH-8092 Zurich, Switzerland, 1998.
- E. Zitzler, L. Thiele, and K. Deb. 2000. Comparison of multiobjective evolutionary algorithms: Empirical results. *Evolutionary Computation* 8:2, 173-195.
- I.Zwir and E.H.Ruspini. 1999. Qualitative Object Description: Initial Reports of the Exploration of the Frontier. In *Proc. of the EUROFUSE-SIC'99*. Budapest, Hungary, 485-490.
- I. Zwir, R. Romero Zaliz and E. H. Ruspini. Automated biological sequence description by genetic multiobjective generalized clustering. Ann N Y Acad Sci, 980:65–82, 2002.
- 37. I. Zwir, P. Traverso, and E. A. Groisman. Semantic-oriented analysis of regulation: the phop regulon as a model network. In *Proceedings of the 3rd International Conference on Systems Biology (ICSB)*, 2003.

sequence	ttgaca	tataat	promoter	found
aceEF	13	36	ACGTAGACCTGT CTTATT GAGCTTTC CGGCGAGAG TTCAAT GGGACAGGTCCAG	\checkmark
ada	-	-	AGCGGCTAAAGGTG TTGACG TGCGAGAA ATGTTTAGC TAAACT TCTCTCATGTG	
alaS	15	39	AACGCATACGGTAT TTTACC TTCCCAGTC AAGAAAACT TATCTT ATTCCCACTTTTCAG	· 🗸
ampC	15	37	TGCTATCCTGACAG TTGTCA CGCTGATT GGTGTCGT TACAAT CTAACGCATCGCCAA	G √
ampC/C16	7	30	GCTATC TTGACA GTTGTCAC GCTGATTGG TATCGT TACAATCTAACGTAT	G √
araBAD	15	37	TTAGCGGATCCTAC CTGACG CTTTTTAT CGCAACTC TCTACT GTTTCTCCATACCCG	T 🗸
araC	15	38	GCAAATAATCAATG TGGACT TTTCTGCC GTGATTATA GACACT TTTGTTACGCGTTTT	G √
araE	12	37	CTGTTTCCGAC CTGACA CCTGCGTGA GTTGTTCACG TATTTT TTCACTATGTCTTAC	.c √
araI(c)	13	35	AGCGGATCCTAC CTGGCG CTTTTTAT CGCAACTC TCTACT GTTTCTCCATACCCG	T 🗸
araI(c)X(c)	13	37	AGCGGATCCTAC CTGGCG CTTTTTATC GCAACTCTC TACTAT TTCTCCATACCCGTT	T 🗸
argCBH	15	39	TTTGTTTTTCATTG TTGACA CACCTCTGG TCATGATAG TATCAA TATTCATGCAGTATT	\checkmark
argCBH-P1/6-	15	36	TTTGTTTTTCATTG TTGACA CACCTCT GGTCATAA TATTAT CAATATTCATGCAGT.	T √
argCBH-P1/LL	15	36	TTTGTTTTTCATTG TTGACA CACCTCT GGTCATGA TATTAT CAATATTCATGCAGT.	T √
argE-P1	15	38	TTACGGCTGGTGGG TTTTAT TACGCTCA ACGTTAGTG TATTTT TATTCATAAATACTG	XA 🗸
argE-P2	15	38	CCGCATCATTGCTT TGCGCT GAAACAGT CAAAGCGGT TATGTT CATATGCGGATGGCG	\checkmark
argE/LL13	15	38	CCGCATCATTGCTT TGCGCT GAAACAGT CAAAGCGGT TATATT CATATGCGGATGGCG	\checkmark
argF	15	38	ATTGTGAAATGGGG TTGCAA ATGAATAA TTACACATA TAAAGT GAATTTTAATTCAAT.	A V
argI	7	30	TTAGAC TTGCAA ATGAATAA TCATCCATA TAAATT GAATTTTAATTCATT	A 🗸
argR	12	35	TCGTCGCCGCG TTGCAG GAGCAAGG CTTTGACAA TATTAA TCAGTCTAAAGTCTC	iG √
aroF	15	37	TACGAAAATATGGA TTGAAA ACTTTACT TTATGTGT TATCGT TACGTCATCCTCGCT	i √
aroG	15	38	AGTGTAAAAACCCCCG TTTACA CATTCTGA CGGAAGATA TAGATT GGAAGTATTGCATTC.	v 🗸
aroH	15	37	GTACTAGAGAACTA GTGCAT TAGCTTAT TTTTTTGT TATCAT GCTAACCACCCGGCG.	lG √
bioA	15	39	GCCTTCTCCAAAAC GTGTTT TTTGTTGTT AATTCGGTG TAGACT TGTAAACCTAAATCT	\checkmark
bioB	15	38	TTGTCATAATCGAC TTGTAA ACCAAATT GAAAAGATT TAGGTT TACAAGTCTACACCG.	A V
bioP98	15	38	TTGTTAATTCGGTG TAGACT TGTAAACC TAAATCTTT TAAATT TGGTTTACAAGTCGA	: 🗸
C62.5-P1	-	-	CACCTGCTCTCGC TTGAAA TTATTCTC CCTTGTCCC CATCTC TCCCACATCCTGTTT	
carAB-P1	15	38	ATCCCGCCATTAAG TTGACT TTTAGCGC CCATATCTC CAGAAT GCCGCCGTTTGCCAG.	v 🗸
carAB-P2	15	39	TAAGCAGATTTGCA TTGATT TACGTCATC ATTGTGAAT TAATAT GCAAATAAAGTGAG	\checkmark
cat	13	36	ACGTTGATCGGC ACGTAA GAGGTTCC AACTTTCAC CATAAT GAAATAAGATCACTA	xc 🗸
cit.util-379	-	_	AAACAGGCGGGG GTCTCA GGCGACTAA CCCGCAAAC TCTTAC CTCTATACATAATTC	G 🗌
cit.util-431	14	38	GACAGGCACAGCA TTGTAC GATCAACTG ATTTGTGCC AATAAT TAAATGAAATCAC	\checkmark
CloDFcloacin	15	37	TCATATATTGACAC CTGAAA ACTGGAGG AGTAAGGT AATAAT CATACTGTGTATATA	. 🗸
CloDFnaI	15	39	ACACGCGGTTGCTC TTGAAG TGTGCGCCA AAGTCCGGC TACACT GGAAGGACAGATTTG	I √
colE1-B	15	36	TTATAAAAATCCTCT TTGACT TTTAAAA CAATAAGT TAAAAA TAAATACTGTAA	\checkmark
colE1-C	15	37	TTATAAAATCCTCT TTGACT TTTAAAAC AATAAGTT AAAAAT AAATACTGTACATAT	A 🗸
colE1-P1	15	38	GGAAGTCCACAGTC TTGACA GGGAAAAT GCAGCGGCG TAGCTT TTATGCTGTATATAA	A 🗸
colE1-P2	15	37	TTTTTAACTTATTG TTTTAA AAGTCAAA GAGGATTT TATAAT GGAAACCGCGGTAGC	T 🗸
colE110.13	13	37	GCTACAGAGTTC TTGAAG TAGTGGCCC GACTACGGC TACACT AGAAGGACAGTATTT	iG √
colicinE1 P3	15	37	TTTTTAACTTATTG TTTTAA AAGTCAAA GAGGATTT TATAAT GGAAACCGCGGTAGC	T 🗸
crp	15	38	AAGCGAGACACCAG GAGACA CAAAGCGA AAGCTATGC TAAAAC AGTCAGGATGCTACA	i 🗸
cva	15	38	GTAGCGCATCTTTC TTTACG GTCAATCA GCAAGGTGT TAAATT GATCACGTTTTAGAC	. 🗸
dapD	_	_	AAGTGCATCAGCGG TTGACA GAGGCCCTC AATCCAAAC GATAAA GGGTGATGTGTTTAC	G 🗌
deo-P1	14	39	CAGAAACGTTTTA TTCGAA CATCGATCT CGTCTTGTGT TAGAAT TCTAACATACGGTTG	· 🗸
deo-P2	10	35	TGATGTGTA TCGAAG TGTGTTGCG GAGTAGATGT TAGAAT ACTAACAAACTCGCA.	↓ <i>✓</i>
deo-P3	15	37	ACACCAACTGTCTA TCGCCG TATCAGCG AATAACGG TATACT GATCTGATCATTTAA	
divE	15	38	AAACAAATTAGGGG TTTACA CGCCGCAT CGGGATGTT TATAGT GCGCGTCATTCCGGA	G 🗸

Table 4. Results for the training sequences

R. Romero Zaliz et al.

sequence	ttgaca	tataat	promoter	found
dnaA-1p	15	39	TGCGGCGTAAATCG TGCCCG CCTCGCGGC AGGATCGTT TACACT TAGCGAGTTCTGGAAA	~
dnaA-2p	15	38	TCTGTGAGAAACAG AAGATC TCTTGCGC AGTTTAGGC TATGAT CCGCGGTCCCGATCG	\checkmark
dnaK-P1	15	39	TTTGCATCTCCCCC TTGATG ACGTGGTTT ACGACCCCA TTTAGT AGTCAACCGCAGTG	\checkmark
dnaK-P2	15	37	ATGAAATTGGGCAG TTGAAA CCAGACGT TTCGCCCC TATTAC AGACTCACAACCACA	\checkmark
dnaQ-P1	15	37	GCCAGCGCTAAAGG TTTTCT CGCGTCCG CGATAGCG TAAAAT AGCGCCGTAACCCC	\checkmark
Fpla-oriTpX	15	38	GAACCACCAACCTG TTGAGC CTTTTTGT GGAGTGGGT TAAATT ATTTACGGATAAAG	×.
Fplas-traM	15	38	ATTAGGGGTGCTGC TAGCGG CGCGGTGT GTTTTTTTA TAGGAT ACCGCTAGGGGCGCTG	\checkmark
Fplas-traY/Z	14	37	GCGTTAATAAGGT GTTAAT AAAATATA GACTTTCCG TCTATT TACCTTTTCTGATTATT	\checkmark
frdABCD	12	34	GATCTCGTCAA ATTTCA GACTTATC GATCAGAC TATACT GTTGTACCTATAAAGGA	\checkmark
fumA	15	38	GTACTAGTCTCAGT TTTTGT TAAAAAAG TGTGTAGGA TATTGT TACTCGCTTTTAACAGG	\checkmark
γ - δ -tnpA	15	38	ACACATTAACAGCA CTGTTT TTATGTGT GCGATAATT TATAAT ATTTCGGACGGTTGCA	\checkmark
γ - δ -tnpR	14	36	ATTCATTAACAAT TTTGCA ACCGTCCG AAATATTA TAAATT ATCGCACACATAAAAAC	\checkmark
gal-P1	15	38	TCCATGTCACACTT TTCGCA TCTTTGTT ATGCTATGG TTATTT CATACCATAAG	\checkmark
gal-P2	15	37	CTAATTTATTCCAT GTCACA CTTTTCGC ATCTTTGT TATGCT ATGGTTATTTCATACC	\checkmark
gal-P2/mut-1	14	36	TAATTTATTCCAT GTCACA CTTTTCGC ATCTTTGT TATACT ATGGTTATTTCATAC	\checkmark
gal-P2/mut-2	14	36	TAATTTATTCCAT GTCACA CTTTTCGC ATTTTTGT TATGCT ATGGTTATTTCATAC	\checkmark
glnL	15	40	CAATTCTCTGATGC TTCGCG CTTTTTATC CGTAAAAAGC TATAAT GCACTAAATGGTGC	\checkmark
gln	15	38	TAAAAAACTAACAG TTGTCA GCCTGTCC CGCTTATAA GATCAT ACGCCGTTATACGTT	\checkmark
gltA-P1	15	37	ATTCATTCGGGACA GTTATT AGTGGTAG ACAAGTTT AATAAT TCGGATTGCTAAGTA	\checkmark
gltA-P2	15	39	AGTTGTTACAAACA TTACCA GGAAAAGCA TATAATGCG TAAAAG TTATGAAGTCGGT	\checkmark
glyA	15	38	TCCTTTGTCAAGAC CTGTTA TCGCACAA TGATTCGGT TATACT GTTCGCCGTTGTCC	\checkmark
glyA/geneX	15	39	ACACCAAAGAACCA TTTACA TTGCAGGGC TATTTTTTA TAAGAT GCATTTGAGATACAT	\checkmark
gnd	15	38	GCATGGATAAGCTA TTTATA CTTTAATA AGTACTTTG TATACT TATTTGCGAACATTCCA	✓
groE	-	-	TTTTTCCCCC TTGAAG GGGCGAAG CCATCCCCA TTTCTC TGGTCACCAGCCGGGAA	
gyrB	11	38	CGGACGAAAA TTCGAA GATGTTTACCGTGGAAAAGGG TAAAAT AACGGATTAACCCAAGT	\checkmark
his	14	38	ATATAAAAAGTTC TTGCTT TCTAACGTG AAAGTGGTT TAGGTT AAAAGACATCAGTTGAA	\checkmark
hisA	15	38	GATCTACAAACTAA TTAATA AATAGTTA ATTAACGCT CATCAT TGTACAATGAACTGTAC	\checkmark
hisBp	15	38	CCTCCAGTGCGGTG TTTAAA TCTTTGTG GGATCAGGG CATTAT CTTACGTGATCAG	\checkmark
hisJ(St)	15	37	TAGAATGCTTTGCC TTGTCG GCCTGATT AATGGCAC GATAGT CGCATCGGATCTG	\checkmark
hisS	15	38	AAATAATAACGTGA TGGGAA GCGCCTCG CTTCCCGTG TATGAT TGAACCCGCATGGCTC	\checkmark
htpR-P1	15	38	ACATTACGCCACTT ACGCCT GAATAATA AAAGCGTGT TATACT CTTTCCTGCAATGGTT	\checkmark
htpR-P2	15	39	TTCACAAGCTTGCA TTGAAC TTGTGGATA AAATCACGG TCTGAT AAAACAGTGAATG	\checkmark
htpR-P3	15	38	AGCTTGCATTGAAC TTGTGG ATAAAATC ACGGTCTGA TAAAAC AGTGAATGATAACCTCGT	\checkmark
ilvGEDA	15	38	GCCAAAAAATATCT TGTACT ATTTACAA AACCTATGG TAACTC TTTAGGCATTCCTTCGA	\checkmark
ilvIH-P1	14	37	CTCTGGCTGCCAA TTGCTT AAGCAAGA TCGGACGGT TAATGT GTTTTACACATTTTTTC	\checkmark
ilvIH-P2	15	38	GAGGATTTTATCGT TTCTTT TCACCTTT CCTCCTGTT TATTCT TATTACCCCCGTGT	\checkmark
ilvIH-P3	14	37	ATTTTAGGATTAA TTAAAA AAATAGAG AAATTGCTG TAAGTT GTGGGATTCAGCCGATT	\checkmark
ilvIH-P4	15	38	TGTAGAATTTTATT CTGAAT GTCTGGGC TCTCTATTT TAGGAT TAATTAAAAAAATAGAG	\checkmark
ISlins-PL	15	37	CGAGGCCGGTGATG CTGCCA ACTTACTG ATTTAGTG TATGAT GGTGTTTTTGAGGTGCT	\checkmark
ISlins-PR	13	36	ATATATACCTTA TGGTAA TGACTCCA ACTTATTGA TAGTGT TTTATGTTCAGATAAT	\checkmark
IS2I-II	7	30	GATGTC TGGAAA TATAGGGG CAAATCCAC TAGTAT TAAGACTATCACTTATT	\checkmark
lacI	15	38	GACACCATCGAATG GCGCAA AACCTTTC GCGGTATGG CATGAT AGCGCCCGGAAGAGAGT	\checkmark
lacP1	15	39	TAGGCACCCCAGGC TTTACA CTTTATGCT TCCGGCTCG TATGTT GTGTGGAATTGTGAGC	\checkmark
lacP115	14	37	TTTACACTTTATG CTTCCG GCTCGTAT GTTGTGTGG TATTGT GAGCGGATAACAATTT	\checkmark
lacP2	15	38	AATGTGAGTTAGCT CACTCA TTAGGCAC CCCAGGCTT TACACT TTATGCTTCCGGCTCG	\checkmark
lep	15	37	TCCTCGCCTCAATG TTGTAG TGTAGAAT GCGGCGTT TCTATT AATACAGACGTTAAT	\checkmark
leu	2	25	G TTGACA TCCGTTTT TGTATCCAG TAACTC TAAAAGCATATCGCATT	\checkmark
leultRNA	15	37	TCGATAATTAACTA TTGACG AAAAGCTG AAAACCAC TAGAAT GCGCCTCCGTGGTAGCA	\checkmark
lex	15	38	TGTGCAGTTTATGG TTCCAA AATCGCCT TTTGCTGTA TATACT CACAGCATAACTGTAT	\checkmark
livJ	15	38	TGTCAAAATAGCTA TTCCAA TATCATAA AAATCGGGA TATGTT TTAGCAGAGTATGCT	\checkmark
lpd	7	30	TTGTTG TTTAAA AATTGTTA ACAATTTTG TAAAAT ACCGACGGATAGAACGA	\checkmark
lpp	15	38	CCATCAAAAAAATA TTCTCA ACATAAAA AACTTTGTG TAATAC TTGTAACGCTACATGGA	\checkmark
lppP1	13	37	ATCAAAAAAATA TTCTCA ACATAAAAA ACTTTGTGT TATACT TGTAACGCTACATGGA	\checkmark
lppP2	13	37	ATCAAAAAAATA TTCTCA ACATAAAAA ACTTTGTGT TATAAT TGTAACGCTACATGGA	\checkmark
lppR1	13	36	ATCAAAAAAATA TTCACA ACATAAAA A ACTTTGT GTAATA CTTGTAACGCTACATGGA	\checkmark
Mlrna	15	38	ATGCGCAACGCGGG GTGACA AGGGCGCG CAAACCCTC TATACT GCGCGCCGAAGCTGACC	\checkmark
mac11	14	38	CCCCCGCAGGGAT GAGGAA GGTGGTCGA CCGGGCTCG TATGTT GTGTGGAATTGTGAGC	\checkmark
mac12	14	38	CCCCCGCAGGGAT GAGGAA GGTCGGTCG ACCGGCTCG TATGTT GTGTGGAATTGTGAGC	\checkmark
mac21	14	38	CCCCCGCAGGGAT GAGGAA GGTCGACCT TCCGGCTCG TATGTT GTGTGGAATTGTGAGC	\checkmark
mac3	14	37	CCCCCGCAGGGAT GAGGAA GGTCGGTC GACCGCTCG TATGTT GTGTGGAATTGTGAGCG	\checkmark
mac31	14	37	CCCCCGCAGGGAT GAGGAA GGTCGGTC GACCGCTCG TATATT GTGTGGAATTGTGAGCG	\checkmark
malEFG	15	37	AGGGGCAAGGAGGA TGGAAA GAGGTTGC CGTATAAA GAAACT AGAGTCCGTTTAGGTGT	\checkmark
malK	15	37	CAGGGGGTGGAGGA TTTAAG CCATCTCC TGATGACG CATAGT CAGCCCATCATGAATG	\checkmark
malPQ	15	38	ATCCCCGCAGGATG AGGAAG GTCAACAT CGAGCCTGG CAAACT AGCGATAACGTTGTGT	\checkmark
malPQ/A516P1	12	34	ATCCCCGCAGG ATGAGG AGCCTGGC AAACTAGC GATGAT AACGTTGTGTTGAA	\checkmark
malPQ/A516P2	15	39	ATCCCCCGCAGGAGG ATGAGG AGCCTGGCA AACTAGCGA TAACGT TGTGTTGAAAA	\checkmark
malPQ/A517/A	15	37	CCCCGCAGGATGAG GTCGAG CCTGGCAA ACTAGCGA TAACGT TGTGTTGAAAA	\checkmark
malPQ/Pp12	-	-	ATCCCCGCAGGAT GAGGAA GGTCAACA TCGAGCCTG GAAAAC TAGCGATAACGTTGTGT	
malPQ/Pp13	14	38	ATCCCCGCAGGAT TAGGAA GGTCAACAT CGAGCCTGG CAAACT AGCGATAACGTTGTGT	~
malPQ/Pp14	14	37	ATCCCCGCAGGAT GAGGAA GGTCAACA TCGAGCCTG GAAACT AGCGATAACGTTGTGT	~
malPQ/Pp15	14	38	ATCCCCGCAGGAT GAGAAA GGTCAACAT CGAGCCTGG CAAACT AGCGATAACGTTGTGT	~
malPQ/Pp16	15	38	ATCCCCGCAGGATA AGGAAG GTCAACAT CGAGCCTGG CAAACT AGCGATAACGTTGTGT	~
malPQ/Pp18	15	38	ATCCCCGCAGGATG GGGAAG GTCAACAT CGAGCCTGG CAAACT AGCGATAACGTTGTGT	\checkmark
malT	15	37	GTCATCGCTTGCAT TAGAAA GGTTTCTG GCCGACCT TATAAC CATTAATTACG	\checkmark
manA	15	38	CGGCTCCAGGTTAC TTCCCG TAGGATTC TTGCTTTAA TAGTGG GATTAATTTCCACATTA	\checkmark
metA-P1	15	38	TTCAACATGCAGGC TCGACA TTGGCAAA TTTTCTGGT TATCTT CAGCTATCTGGATGT	\checkmark
metA-P2	15	38	AAGACTAATTACCA TTTTCT CTCCTTTT AGTCATTCT TATATT CTAACGTAGTCTTTTCC	\checkmark
metBL	12	35	TTACCGTGACA TCGTGT AATGCACC TGTCGGCGT GATAAT GCATATAATTTTAACGG	\checkmark
metF	8	31	TTTTCGG TTGACG CCCTTCGG CTTTTCCTT CATCTT TACATCTGGACG	\checkmark

Table 5. Results for the training sequences

_

Generalized Analisys of Promoters (GAP): a Method for DNA Sequence Description21

sequence	ttgaca	tataat	promoter						found
micF	15	37	GCGGAATGGCGAAA	TAAGCA	CCTAACAT	CAAGCAAT	AATAAT	TCAAGGTTAAAATCAAT	×.
motA	15	39	GCCCCAATCGCGCG	TTAACG	CCTGACGAC	TGAACATCC	TGTCAT	GGTCAACAGTGGA	~
MuPc-2	9	32	GGAACACA	TTTAAA	AGTAACTITAT	TAAGTTTTG	TAATACT	ATAAAGICAAIIIGGIG	×
MuPe	15	38	TACCAAAAAGCACC	TTTACA	TTAAGCTT	TTCAGTAAT	TATCTT	TTTAGTAAGCTAGCTA	~
NR1rnaC	15	39	GTCACAATTCTCAA	GTCGCT	GATTTCAAA	AAACTGTAG	TATCCT	CTGCGAAACGATCCCT	~
NR1rnaC/m	15	38	TCACAATTCTCAAG	TTGCTG	ATTTCAAA	AAACTGTAG	TATCCT	CTGCGAAACGATCCCT	~
NTP1rna100	11	35	GGAGTTTGTC	TTGAAG	TTATGCACC	TGTTAAGGC	TAAACT	GAAAGAACAGATTTTGT	~
nusA	7	30	CAGTAT	TTGCAT	CTTCTACC	CAAAACGAG	TAGAAT	TTGCCACGTTTCAGGCG	~
ompC	15	38	GTATCATATTCGTG	TTGGAT	TATTCTGC	ATTTTTGGG	GAGAAT	GGACTTGCCGACTG	×.
ompF	7	30	GGTAGG	TAGCGA	AACGTTAG	TTTGAATGG	AAAGAT	GCCTGCAGACACATAAA	~
ompF/pKI217	3	26	GG	TAGCGA	AACGTTAG	TTTGCAAGC	TTTAAT	GCGGTAGTTTATCAC	\checkmark
ompR	15	36	TTTCGCCGAATAAA	TTGTAT	ACTTAAG	CTGCTGTT	TAATAT	GCTTTGTAACAATTT	\checkmark
p15primer	15	38	ATAAGATGATCTTC	TTGAGA	TCGTTTTG	GTCTGCGCG	TAATCT	CTTGCTTGAAAACGAAA	✓.
p15rnal P22apt	15	39	TAGAGGAGTTAGTC	TTCACA	TCATGCGCC	GGTTAAGGC	TAAACT	GAAAGGACAAGTTTTG	~
P22mnt	15	38	CCACCGTGGACCTA	TTGAGA	ΔΤΔΤΔGΤΔ	GAGTGCTTC	TATCAT	GTCAATAGGTCCACGG	×.
P22PR	15	37	CATCTTAAATAAAC	TTGACT	AAAGATTC	CTTTAGTA	GATAAT	TTAAGTGTTCTTTAAT	~
P22PRM	9	32	AAATTATC	TACTAA	AGGAATCT	TTAGTCAAG	TTTATT	TAAGATGACTTAACTAT	\checkmark
pBR313Htet	12	35	AATTCTCATGT	TTGACA	GCTTATCA	TCGATAAGC	TAGCTT	TAATGCGGTAGTTTAT	\checkmark
pColViron-P1	15	38	TCACAATTCTCAAG	TTGATA	ATGAGAAT	CATTATTGA	CATAAT	TGTTATTATTTTAC	× .
pColViron-P2	13	35	TGTTTCAACACC	ATGTAT	TAATTGTG	TTTATTG	TAAAAT	TAATTTTTCTGACAATAA	~
phiXA	15	38	AATAACCGTCAGGA	TTGACA	CCCTCCCA	ATTGTATGT	TTTCAT	GCCTCCAAATCTTGGA	×.
phiXB	15	39	GCCAGTTAAATAGC	TTGCAA	AATACGTGG	CCTTATGGT	TACAGT	ATGCCCATCGCAGTT	~
phiXD	15	39	TAGAGATTCTCTTG	TTGACA	TTTTAAAAG	AGCGTGGAT	TACTAT	CTGAGTCCGATGCTGTT	1
lambdac17	15	38	GGTGTATGCATTTA	TTTGCA	TACATTCA	ATCAATTGT	TATAAT	TGTTATCTAAGGAAAT	~
lambdacin	15	38	TAGATAACAATTGA	TTGAAT	GTATGCAA	ATAAATGCA	TACACT	ATAGGTGTGGTTTAAT	✓
lambdaL57	14	37	TGATAAGCAATGC	TTTTTT	ATAATGCC	AACTTAGTA	TAAAAT	AGCCAACCTGTTCGACA	~
lambdaP1	15	38	TATCTCTCCCCCCTC	TTCACA	TAAATACC	ACTIGCGA	CATACT		~
lambdaPo	15	38	TACCTCTGCCGAAG	TTGAGT	ATTTTTGC	TGTATTTGT	CATAAT	GACTCCTGTTGATAGAT	~
lambdaPR	15	38	TAACACCGTGCGTG	TTGACT	ATTTTACC	TCTGGCGGT	GATAAT	GGTTGCATGTACTAAG	~
lambdaPR'	15	38	TTAACGGCATGATA	TTGACT	TATTGAAT	AAAATTGGG	TAAATT	TGACTCAACGATGGGTT	~
lambdaPRE	15	39	GAGCCTCGTTGCGT	TTGTTT	GCACGAACC	ATATGTAAG	TATTTC	CTTAGATAACAAT	✓
lambdaPRM	15	38	AACACGCACGGTGT	TAGATA	TTTATCCC	TTGCGGTGA	TAGATT	TAACGTATGAGCACAA	~
pBR322DIa pBR322P4	15	38	CATCTGTGCGGTAT	TTCACA	CCCCATATCCT	CGCICAIGA	GACAAI	CTCCTCTCATACATGCI	~
pBR322primer	15	38	ATCAAAGGATCTTC	TTGAGA	TCCTTTTT	TTCTGCGCG	TAATCT	GCTGCTTGCAAACAAAA	~
pBR322tet	15	38	AAGAATTCTCATGT	TTGACA	GCTTATCA	TCGATAAGC	TTTAAT	GCGGTAGTTTATCACA	~
pBRH4-25	4	27	TCG	TTTTCA	AGAATTCA	TTAATGCGG	TAGTTT	ATCACAGTTAA	~
pBRP1	15	42	TTCATACACGGTGC	CTGACT	GCGTTAGCAAT	TTAACTGTGA	TAAACT	ACCGCATTAAAGCTTA	✓.
pBRRNAI	15	39	GTGCTACAGAGTTC	TTGAAG	TGGTGGCCT	AACTACGGC	TACACT	AGAAGGACAGTATTTG	~
pBRtet=15	15	38	AAGAATICICAIGI	TTGACA	GCTTATCA	TCGGTAGTT	TATCAC	AGTTAAATTGC	× ·
pBRtet-22	15	39	AAGAATTCTCATGT	TTGACA	GCTTATCAT	CGATCACAG	TTAAAT	TGCTAACGCAG	~
pBRtet/TA22	10	33	TTCTCATGT	TTGACA	GCTTATCA	TCGATAAGC	TAAATT	TTATATAAAATTTAGCT	~
pBRtet/TA33	10	33	TTCTCATGT	TTGACA	GCTTATCA	TCGATAAGC	TAAATT	TATATAAAATTTTATAT	\checkmark
pori-I	15	38	CTGTTGTTCAGTTT	TTGAGT	TGTGTATA	ACCCCTCAT	TCTGAT	CCCAGCTTATACGGT	<u> </u>
pori-r	-	-	GATCGCACGATCTG	TATACT	TATTTGAGT	AAATTAACC	CACGAT	CCCAGCCATTCTTCTGC	
pSC101oriP1	3	30	TT	TTGTAG	AGGAGCAAACAG	GCGTTTGCGA	CATCCT	TTTGTAATACTGCGGAA	~
pSC101oriP2	8	30	ATTATCA	TTGACT	AGCCCATC	TCAATTGG	TATAGT	GATTAAAATCACCTAGA	~
pSC101oriP3	15	38	ATACGCTCAGATGA	TGAACA	TCAGTAGG	GAAAATGCT	TATGGT	GTATTAGCTAAAGC	~
pyrB1-P1	15	37	CTTTCACACTCCGC	CCTATA	AGTCGGAT	GAATGGAA	TAAAAT	GCATATCTGATTGCGTG	✓
pyrB1-P2	13	36	TTGCATCAAATG	CTTGCG	CCGCTTCT	GACGATGAG	TATAAT	GCCGGACAATTTGCCGG	~
pyrD pyrE-P1	15	38	ATCCCTTCTAACCA	TACCAA	TAACCGCC	GAACICGCA	TATAAT	ACGCCCCCCGG111G	~
pyrE-P2	14	38	GTAGGCGGTCATA	CTGCGG	ATCATAGAC	GTTCCTGTT	TATAAA	AGGAGAGGTGGAAGG	~
R100rna3	15	39	GTACCGGCTTACGC	CGGGCT	TCGGCGGTT	TTACTCCTG	TATCAT	ATGAAACAACAGAG	~
R100RNAI	15	38	CACAGAAAGAAGTC	TTGAAC	TTTTCCGG	GCATATAAC	TATACT	CCCCGCATAGCTGAAT	~
R100RNAII	15	38	ATGGGCTTACATTC	TTGAGT	GTTCAGAA	GATTAGTGC	TAGATT	ACTGATCGTTTAAGGAA	×.
RIRNAII	15	37	ACTAAAGTAAAGAC	TTTACT	TTGTGGCG	TAGCATGC	TAGATT	ACTGATCGTTTAAGGAA	~
recA	15	38	GTAAGCGGTCATTT	ATGTCA	CACTTOTO	GUATACAG	TTCCAT	TCAATTACACCA	~
rn(pRNaseP)	15	38	ATGCGCAACGCGGG	GTGACA	AGGGCGCG	CAAACCCTC	TATACT	GCGCGCCGAAGCTGACC	~
rp1J	15	38	TGTAAACTAATGCC	TTTACG	TGGGCGGT	GATTTTGTC	TACAAT	CTTACCCCCACGTATA	\checkmark
rpmH1p	15	38	GATCCAGGACGATC	CTTGCG	CTTTACCC	ATCAGCCCG	TATAAT	CCTCCACCCGGCGCG	✓.
rpmH2p	15	38	ATAAGGAAAGAGAA	TTGACT	CCGGAGTG	TACAATTAT	TACAAT	CCGGCCTCTTTAATC	
гртнар	15	38	AAA111AATGACCA	TTGCAA	AGTTOGOT	TGAGCTGCC	TAGATT	ARAGAICCUAGGACG	× (
rpoB	15	37	CGACTTAATATACT	GCGACA	GGACGTCC	GTTCTGTG	TAAATC	GCAATGAAATGGTTTAA	Š.
rpoD-Pa	13	36	CGCCCTGTTCCG	CAGCTA	AAACGCAC	GACCATGCG	TATACT	TATAGGGTTGC	1
rpoD-Pb	9	33	AGCCAGGT	CTGACC	ACCGGGCAA	CTTTTAGAG	CACTAT	CGTGGTACAAAT	~
rpoD-Phs	13	36	ATGCTGCCACCC	TTGAAA	AACTGTCG	ATGTGGGAC	GATATA	GCAGATAAGAA	1
rpoD-Phs/min	- 14	- 27	CCC	TTGAAA	AACTGTCGATG	TGGGACGATA	TAGCAG	ATAAGAATATTGCT	
rrn4.55	14	37	GGUAUGUGATGGG	TTGTCA	1 1 AGCCGG	TAACTCCC	TATAAT	GCGCCACCACTGACACC	× (
	10	51		.1010A	GOOGGAN	INNOICOU	. A I MAI	SCOCONCENCION CAUGE	ı ř

Table 6. Results for the training sequences

R. Romero Zaliz et al.

sequence	ttgaca	tataat	promoter	1	found
rrnABP2	15	37	GCAAAAATAAATGC TTGACT CTGTAGCG GG	JAAGGCG TATTAT GCACACCCCGCGCCGC	~
rrnB-P3	14	40	CTATGATAAGGAT TACTCA TCTTATCCTT ATCA	AAACCGT TAAAAT GGGCGGTGTGAGCTTG	1
rrnB-P4	15	36	GCGTATCCGGTCAC CTCTCA CCTGACA GT	TTCGTGG TAAAAT AGCCAACCTGTTCGACA	\checkmark
rrnDEXP2	15	37	CCTGAAATTCAGGG TTGACT CTGAAAGA GG	SAAAGCG TAATAT ACGCCACCTCGCGACAG	\checkmark
rrnD-P1	15	37	GATCAAAAAAATAC TTGTGC AAAAAATT GG	GGATCCC TATAAT GCGCCTCCGTTGAGACG	\checkmark
rrnE-P1	15	37	CTGCAATTTTTCTA TTGCGG CCTGCGGA GA	ACTCCC TATAAT GCGCCTCCATCGACACG	1
rrnG-P1	15	37	TTTATATTTTTCGC TTGTCA GGCCGGAA TA	ACTCCC TATAAT GCGCCACCACTGACACG	5
rrnG-P2	15	37	AAGCAAAGAAATGC TTGACT CTGTAGCG GG	MAAGGCG TATTAT GCACACCGCCGCGCGCG	
rrnX1	15	37	ATGCATTTTTCCGC TTGTCT TCCTGAGC CG	ACTCCC TATAAT GCGCCTCCATCGACACG	
RSEprimer	15	38	GGAATAGCTGTTCG TTGACT TGATAGAC CGA	ATTGATT CATCAT CTCATAAATAAAGAA	
RSFrnaI	15	39	TAGAGGAGTTTGTC TTGAAG TTATGCACC TGT	TTAAGGC TAAACT GAAAGAACAGATTTTG	
S10	15	37	TACTAGCAATACGC TTGCGT TCGGTGGT TA	AGTATE TATAAT GCGCGGGCTTGTCGT	
sdh-P1	14	37	ATATGTAGGTTAA TTGTAA TGATTTTG TGA	ACAGCC TATACT GCCGCCAGTCTCCGGAA	
sdh-P2	15	37	AGCTTCCGCGATTA TGGGCA GCTTCTTC GT	CCAAATT TATCAT GTGGGGGCATCCTTACCG	
SDC	15	38	CCGTTTATTTTTC TACCCA TATCCTTG AAG	COGTOT TATAAT GCCGCGCCCCCGATA	
spot42r	15	37	TTACAAAAAGTGCT TTCTGA ACTGAACA AA	AAAAGAG TAAAGT TAGTCGCGTAGGGTACA	
ssh	15	39	TAGTAAAAGCGCTA TTGGTA ATGGTACAA TCG	SCGCGTT TACACT TATTCAGAACGATTTT	
etr	15	38	TCGTTGTATATTTC TTGACA CCTTTTCG GCA	TCGCCC TAAAAT TCGCCCTCATAT	
sucAB	15	39	AAATGCAGGAAATC TTTAAA AACTGCCCC TGA	CACTAA GACAGT TTTAAAAGGTTCCTT	
supB=E	15	38	CCTTGAAAAAGAGG TTGACG CTGCAAGG CTC	TATACE CATAAT GCGCCCCGCAACGCCGA	
T7-A1	15	38	TATCAAAAAGAGTA TTGACT TAAAGTCT AAC	CTATAG GATACT TACAGCCATCGAGAGGG	
T7-A3	15	38	GTGAAACAAAACGG TTGACA ACATGAAG TAA	ACACGG TACGAT GTACCACATGAAACGAC	
T7-C	15	38	CATTGATAAGCAAC TTGACG CAATGTTA ATG	ACCORDA TACTOT TATOTTACACCTCATC	
T7-D	15	38	CTTTAAGATAGGCG TTGACT TGATGGGT CTT	TAGGTE TAGGET TTAGGTETTGCCTTTA	
T742	15	30	ACGAAAAACAGGTA TTGACA ACATGAAGT AAC	ATCCAC TAACAT ACAAATCCCTACCTAAC	
T7F	11	24	CTTACCCATC ATCATA TTTACACA TTA	AIGCAG TARGAT ACARATCGCTACGCTAR	•
TAC16	10	22	AATCACCTC TTCACA ATTAATCA TC	CCCCTCC TATAAT CTCTCCAATTCTC	•
Tn10Bin	10	32	TCATTAAC TTAACC TCCATACAC ATC	TTOTAL TATCAT CANATCOTTTOCCANA	•
Tn10Pout	15	29	ACTOTANTICCCCC CACAAT TCCTAAAC ACA	ACTOCTC TAAAAT ATCCACTTCCCACATC	•
Tn10f out	15	20	ATTOCTAATTTTC TTCACA CTCTATCAT TCA	TACACT TATTTT ACCACTCCCTATCACT	•
Tn10tetA	15	20	TATTCATTCACTT TTOTCT ATCACTCAT ACC	CACTCC TAAAAT AACTCTATCAATCATA	•
Tn10tetR*	11	24	TCATACCCAC TCCTAA AATAACTC TAT	CANTCA TACACT CTCAACAAAATTACC	•
Tn10tetit	15	27	TTAAAATTTTCTTC TTCATC ATTTTTAT TT	CCATCA TACATT TAAAATAACATACC	•
Tn10xxxP2	15	29	AAATCTTCTTAACA TTCTCA CCACCACA TCA	TCATCA TACCAT AAACATACTCACCC	•
Tn10xxxF2	10	30	CONTONTAGA TIGICA CGACCACA ICA	TICAIGA TACCAT ARACATACIGACGG	*
Tn2660bla-P3	15	38	TTTTTCTAAATACA TTCAAA TATCTATC CCC	TCATCA CACAAT AACCCTCATAAATCCT	
Tn2661bla Pa	15	28	CONTRACTOR TICARA INIGINIC COC	TCOTCA TACCOT TATTTTATACCTTAA	•
Tn2661bla Ph	10	38	COTC CTCATA CCCTTATT TT	ATACCT TAATCT CATCATAATAATCCTTT	•
Tn501mer	14	30	TTTTCCATATCGC TTGACT CCGTACATG AGTA	CCCAAC TAACGT TACCCTATCCAATTTC	
Tn501merB	15	37	CATGCGCTTGTCCT TTCGAA TTGAAATT GG	ATAGCE TAACCT TACTTCCGTACTCA	
TETP	15	29	TCCACCATCATCATC TTCCAT CTCACCTC CTA	ACATCO TAACCT TCATCATAACTTCTCCT	•
Thomas	15	28	CAACCCAACCCCAA TTCCCA CCTCCCCC CCA	CTCTCC TAACCT TCCCAACCCCTCCAA	•
Tn7 PLF	15	28	ACTACACACAATAC TTCTAA ACTCAAAT CAC	TTCCACT TATCCT CTCAAAAACCAT	•
the A	15	27	ALACAATTTCACAA TACACA AAAACTCT CA	ACTOTAL TALTOT ACCOTCCTCTCTCCC	•
tonP	15	20	ATCOTOTTOCOTTA TTOAAT ATCATTOCT ATT	TTCCATT TAAAAT CCACACCTCCTTT	•
tonb twfA	15	20	ACCCCCTAAACTTC TTCACA CCCCAACCA ATC	TTTACC TALACT ACACTCTCCTT	•
trifP	15	29	ACCCCCTAAACTIC IIGACA GCGGAAACCA AIG	TTTACC TAAACT TCTCTCATCTC	•
tro	15	29	TOTOLAATCACCTC TTCACA ATTAATCA TCC	AACTAC TTAACT ACTACCCAACTTCACCT	•
trp trpP2	15	28	ACCCCAACAAAACC CTCACA TTTTAACA CCT	TRACING TIRACI AGIRCGCARGITCACGI	•
trpI 2	15	20	TOCOCRECTORTA CTORES COCRECTT ATC	ATATCC TATCCT ACTOTTACCCACTACA	•
trpS	15	38	CGCCGAGGCTATCG ATCTCA GCCAGCCT GAT	CTAATT TATCAG TCTATAAATGACC	
tryA	15	39	CAGCTTACTATTGC TTTACG AAAGCGTAT CCG	GTGAAA TAAAGT CAACTAGTTGGTTAA	
tufB	15	38	ATGCAATTTTTTAG TTGCAT GAACTCGC ATG	TCTCCA TAGAAT GCGCGCTACTTGATGCC	
tvrT	15	37	TCTCAACGTAACAC TTTACA GCGGCGCG TC	ATTTGA TATGAT GCGCCCCGCTTCCCCGAT	
tyrT /109	15	39	ACAGCGCGTCTTTG TTTACG GTAATCGAA CGA	ATTATTC TTTAAT CGCCAGCAAAAATAA	
$t_{\rm vrT}/140$	10	-	TTAAGTCGTCACTA TACAAA GTACTGGCA CAG	CCCCCTC TTTCTT TACCCTAATCC	'n
tyrT/178	13	34	TECCCCCACETC CTCACE TCCACAA AA	ACCTCT TAACTC CTCCACTATACA	
tyrT/212	2	24	C ATGTCG ATCATACC TA	CACAGE TEAAGA TATEATECECCECAGETCETCACE	
tyrT/6	-		ATTTTTCTCAAC GTAACA CTTTACAG GC	GCGTCA TTTGAT ATGATGCGCCCCCCTTC	'n
tyrT/77	13	38	ATTATTCTTTAA TCGCCA GCAAAAATA ACTO	SGTTACC TTTAAT CCGTTACGGATGAAAAT	
uncl	15	37	TGGCTACTTATTGT TTGAAA TCACGCCC CC	3GCACCG TATAAT TTGACCGCTTTTTGAT	
uvrB-P1	15	28	TCCAGTATAATTTG TTGCCA TAATTAAC TAC	GACGAG TAAAAT TACATACCTCCCCCC	
uvrB-P2	15	30	TCACAAATATTATC CTCATC AACTCTTT TT	CATCCAG TATAAT TTGTTGGCATAATTAA	
uvrB-P3	15	38	ACAGTTATCCACTA TTCCTC TCCATAAC	CTCTAT TAGAGT TAGAAAACACGACGCA	
uvrC	15	38	COCCATTTECCACT TTETCT CAACCTCA ATT	CCAGAT TATCCT CATCATCACCAACC	
uvrD	15	37	TEGANATTTOCCCC TTECCA TOTOTOA AII	CCCTCA TATAAT CACCAAATCTCTATAT	
434PB	15	28	AAGAAAAACTGTAT TTGACA AACAAGAT ACA	ATTGTAT GAAAAT ACAAGAAAGTTTGTTGA	
134PRM	15	38	ACAATGTATCTTGT TTGTCA AATACACT TT	TCTTCT CAACAT TCCCCCCTAAATAACACA	
4041 IUM	10	30	NORMANA AND IN THE PARTY AND	ADADAAT ADAUTAATAADADA TAADAADA	v

Table 7. Results for the training sequences