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Recent advances in the accessibility of databases containing represen-
tations of complex objects—exemplified by repositories of time-series
data, information about biological macromolecules, or knowledge about
metabolic pathways—have not been matched by availability of tools that
facilitate the retrieval of objects of particular interest while aiding to un-
derstand their structure and relations. In applications such as the analy-
sis of DNA sequences, on the other hand, requirements to retrieve objects
on the basic of qualitative characteristics are poorly met by descriptions
that emphasize precision and detail rather than structural features.

This paper presents a method for identification of interesting qual-
itative features in biological sequences. Our approach relies on a gen-
eralized clustering methodology, where the features being sought corre-
spond to the solutions of a multivariable, multiobjective optimization
problem and generally correspond to fuzzy subsets of the object being
represented. Foremost among the optimization objectives being consid-
ered are measures of the degree by which features resemble prototypical
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structures deemed to be interesting by database users. Other objectives
include feature distance and, in some cases, performance criteria related
to domain-specific constraints.

Genetic-algorithm methods are employed to solve the multiobjective
optimization problem. These optimization algorithms discover candidate
features as subsets of the object being described that lie in the set of
all Pareto-optimal solutions—of that problem. These candidate features
are then inter-related employing domain-specific relations of interest to
the end users.

We present results of the application of a method termed Generalized
Analysis of Promoter (GAP) to identify one of the most important fac-
tors involved in the gene regulation problem in bacteria, which is crucial
for detecting regulatory behaviors or genetic pathways as well as gene
transcription: the RNA polymerase motif. The RNA polymerase or pro-
moter motif presents vague submotifs linked by different distances, thus,
making its recognition in DNA sequences difficult. Moreover, multiple
promoter motifs can be present in the same regulatory regions and all of
them can be potential candidates until experimental mutagenesis is per-
formed. GAP is available for public use in http://soar-tools.wustl.edu.

1. Introduction

One of the big challenges of the post genomic era is determining when,

where and for how long genes are turned on or off4. Gene expression is

determined by protein-protein interactions among regulatory proteins and

with RNA polymerase, and protein-DNA interactions of these trans-acting

factors with cis-acting DNA sequences in the promoters of regulated genes
22,11. Therefore, identifying these protein-DNA interactions, by means of

those DNA motifs that characterize the regulatory factors that operate in

the transcription of a gene1,23, becomes crucial for determining which genes

participate in a regulation process, how they behave and how are they con-

nected to build genetic networks. The RNA polymerase or promoter is

an enzyme that transcribes a gene or recruits other regulatory factors to

interact with it, producing cooperative regulations 22. Different computa-

tional methods have been applied to discover promoter motifs or patterns
5,14,16,13,1. However, most of them failed to provide accurate predictions in

prokaryotic promoters because of the variability of the pattern, which com-

prises more than one vague submotif and variable distances between them.

Moreover, multiple occurrences of promoters in the same regulatory region

of one gene can be found (e.g. different promoters can be used for gene

activation and repression, or can interact with different regulatory factors

from the same regulatory pathway 19,7).
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This paper presents a method termed Generalized Analysis of Promot-

ers (GAP), which applies generalized clustering techniques 29,35 to the dis-

covery of qualitative features in complex biological sequences, particularly

multiple promoters in bacterial genomes. The motivation for the devel-

opment of this methodology is provided by requirements to search and

interpret databases containing representations of this type of objects in

terms that are close to the needs and experience of the users of those

data-based descriptions. These qualitative features include both interest-

ing substructures and interesting relations between those structures, where

the notion of interestingness is provided by domain experts by means

of abstract qualitative models or learned from available databases. The

GAP method represents promoter features as fuzzy logic expressions with

fuzzy predicates, whose membership functions are learned from probabilis-

tic distributions30,21,36. The proposed method takes adventage of a new

developed Multi-Objective Scatter Search (MOSS) algorithm to identify

multiple promoters occurrences within genomic regulatory regions by opti-

mizing multiple criteria that those features that describe promoters should

satisfy. This methodology formalizes previous attempts to produce exhaus-

tive searches of promoters1, most of which emphasize the processing of

detailed system measurements rather than that of qualitative features of

direct meaning to users (called perceptions by Zadeh) 32.

Therefore, this chapter is organized as follows: Section 2 describes the

generalized clustering framework; Section 3 explines the problem ofdis-

coverying and describing bacterial promoters; Section 4 applies the GAP

method to the promoter discovery problem in Escherichia coli (E. coli)

genome; Section 5, shows the results obtained by the proposed method and

its evaluation; and Section 6 summarizes the concluding remarks.

2. Generalized Clustering

The method presented in this paper belong to a family of techniques for the

discovery of interesting structures in datasets by classification of its points

into a finite number of fuzzy subsets, or fuzzy clustering. Fuzzy cluster-

ing methods were introduced by Ruspini27 to provide a richer representa-

tion scheme, based on a flexible notion of partition, for the summarization

of dataset structure, and to take advantage of the ability of continuous-

analysis techniques to express and treat classification problems in a formal

manner.
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In Ruspini’s original formulation the clustering problem was formulated

as a continuous-variable optimization problem over the space of fuzzy par-

titions of the dataset. This original formulation of the clustering problem as

an optimization problem has been largely retained in various extensions of

the approach, which differ primarily on the nature of the functionals being

optimized and on the constraints that the partition must satisfy3.

The original approach proposed by Ruspini, however, focused on the

determination of the clustering as a whole, i.e., a family of fuzzy subsets

of the dataset providing a disjoint, exhaustive partition of the set into in-

teresting structures. Recent developments, however, have emphasized the

determination of individual clusters as fuzzy subsets having certain optimal

properties. From this perspective, a fuzzy clustering is a collection of opti-

mal fuzzy clusters—that is, each cluster is optimal in some sense and the

partition satisfies certain conditions—rather than an optimal partition—

that is, the partition, as a whole, is optimal in the sense that it minimizes

some predefined functional defining classification quality. Redirecting the

focus of the clustering process to the isolation of individual subsets hav-

ing certain desirable properties provides also a better foundation for the

direct characterization of interesting structure while freeing the clustering

process from the requirement that clusters be disjoint and that partitions

be exhaustive.

In the context of image-processing applications, for example, features

may correspond to certain interesting prototypical shapes. In these appli-

cations not every image element may belong to an interesting feature while

some points might belong to more than one cluster (e.g., the intersection of

two linear structures). It was, indeed, n the context of image-processing ap-

plications that Krishnapuram and Keller6 reformulated the fuzzy clustering

problem so as to permit the sequential isolation of clusters. This method-

ology, called possibilistic clustering, does not rely, like previous approaches,

on prior knowledge about the number of clusters while permitting to take

full advantage of clustering methods based on the idea of prototype.

Prototype-based classification methods3 are based on the idea that a

dataset could be represented, in a compact manner, by a number of pro-

totypical points. The well-known fuzzy c-means method of Bezdek—the

earliest fuzzy-clustering approach exploiting this idea—seeks to describe a

dataset by a number of prototypical points lying in the same domain as the

members of that dataset. Extensions of this basic idea based on generaliza-

tion of the notion of prototypical structure in a variety of ways (e.g., as line

or curve segments in some euclidean space) are the basis for methods that
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seek to represent datasets in terms of structures that have been predefined

as being of particular interest to those seeking to understand the underlying

physical systems being studied. Generally speaking, however, these methods

require that prototypical structures belong to certain restricted families of

objects so as to exploit their structural properties (e.g., the linear structure

of line segments or hyperplane patches).

The generalized clustering methodology presented in this paper belongs

to this type of approaches, extending them by consideration of arbitrary

definitions of interesting structures provided by users by users by means of

a family of parameterized models M = [Mα] and a set of relations between

them 28,35. In addition to a variety of geometric structures, these mod-

els may also be described by means of structures (e.g., neural networks)

learned from significant examples of the features being defined or in terms

of very general constraints that features might satisfy to some degree (soft

or fuzzy constraints). As is the case with possibilistic clustering methods,

our approach is based on the formulation of the qualitative-feature iden-

tification problem in terms of the optimization of a continuous functional

Q(F,Mα) that measures the degree of matching between a fuzzy subset

F of the dataset and some instantiation Mα of the family of interesting

models29.

Our approach recognizes, however, that simple reliance on optimization

of a single performance index Q would typically result in the generation

of a large number of features with small extent and poor generalization as

it is usually easier to match smaller subsets of the dataset than significant

portions of it. For this reason, it is also necessary to consider, in addition to

measures Q of representation quality, additional criteria S gauging the size

of the structure being represented. In addition, it may also be necessary

to consider also application-specific criteria introduced to assure that the

resulting features are valid and meaningful (e.g., constraints preventing

selective picking of sample points so that they lie, for example, close to a

line in sample space).

This multiobjective problem might be treated by aggregation of the mul-

tiple measures of feature desirability into a global measure of cluster quality
28. A problem with this type of approach, which is close in spirit to mini-

mum description length methods26, is the requirement to provide a-priori

relative weights to each one of the objectives being aggregated. It should

be clear that assignment of larger weight to measures Q of quality repre-

sentation would lead to small features with higher degrees of matching to

models in the prototype families while, conversely, assigning higher weights
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to measures S of cluster extent would tend to produce larger clusters albeit

with poor modeling ability. Ideally, a family of optimization problems, each

similar in character to the others but with different weights assigned to

each of the aggregated objectives, should be solved so as to produce a full

spectrum of candidate clusters.

Rather than following such a path—involving the solution of multiple

problems—our approach relies, instead, on a reformulation of the general-

ized clustering problem as a multiobjective optimization problem involving

several measures of cluster desirability29. In this formulation, subsets of

the dataset of potential interest are locally optimal in the Pareto sense,

i.e., they are locally nondominated solutions of the optimization problem.b.

Locally nondominated solutions of a multiobjective optimization problem

are those points in feature space such that their neighbors do not have

better objective values for all objectives while being strictly superior in at

least one of them. (i.e., a better value, for a neighbor, of some objective

implies a lower value of another). The set of these solutions is called the

local Pareto-optimal or local effective frontier. We employ a multiobjective

genetic algorithm (MGA)29 based on an extension of methods originally

proposed by Marti and Laguna 18,12 to solve this problem. This method is

particularly an attractive tools to solve such complex optimization problems

because of their generality and their ability, stemming from application of

multimodal optimization procedures, to isolate local optima.

3. Problem: Discovering Promoters in DNA Sequences

Biological sequences, such as DNA or protein sequences, are a good example

of the type of complex objects that maybe described in terms of meaning-

ful structural patterns. Availability of tools to discover these structures and

to annotate the sequences on the basis of those discoveries would greatly

improve the usefulness of these repositories that currently rely on methods

developed on the basis of computational efficiency and representation accu-

racy rather than on terms of structural and functional properties deemed

to be important by molecular biologists.

An important example of biological sequences are prokaryotic promoter

data gathered and analyzed by many compilations 8,5,17 that reveal the

presence of two well conserved sequences or submotifs separated by vari-

able distances and a less conserved sequence. The variability of the distance

bThe notions of proximity and neighborhood in feature space is application dependent
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between submotifs and their fuzziness, in the sense that they present sev-

eral mismatches, hinder the existence of a clear model of prokaryotic core-

promoters. The most representative promoters in E. coli (i.e. σ70subunits)

are described by the following conserved patterns:

(1) TTGACA: This pattern is an hexanucleotide conserved sequence whose

middle nucleotide is located approximately 35 pair of bases upstream

of the transcription start site. The consensus sequence for this pattern

is TTGACA and the nucleotides reported in 17 reveal the following nu-

cleotide distribution: T69T79G61A56C54A54, where for instance the first

T is the most seen nucleotide in the first position of the pattern and is

present in 69 % of the cases. This pattern is often called -35 region.

(2) TATAAT: This pattern is also an hexanucleotide conserved sequence,

whose middle nucleotide is located approximately 10 pair of bases up-

stream of the transcription start site. The consensus sequence is TATAAT

and the nucleotide distribution in this pattern is T77A76T60A61A56T82,

which is often called -10 region17.

(3) CAP Signal: In general, a pyrimidine (C or T) followed by a purine (A or

G) compose the CAP Signal. This signal constitutes the transcription

start site (TSS) of a gene.

(4) Distance(TTGACA, TATAAT). The distance between the TTGACA

and TATAAT consensus submotifs follows a data distribution between

15 and 21 pair of bases. This distance is critical in holding the two sites

at the appropriate distance for the geometry of RNA polymerase 8.

The identification of the former RNA polymerase or promoters sites

becomes crucial to detect gene activation or repression, by the way in

which such promoters interact with different regulatory proteins (e.g. over-

lapping suggest repression and distances of approximately 40 base pairs

suggest typical activation). Moreover, combining the promoter sites with

other regulatory sites 37 can reveal different types of regulation, harbor-

ing RNA polymerase alone, RNA polymerase recruiting other regulatory

protein, or cooperative regulations among more than one regulator22. Dif-

ferent methods have been used to identify promoters 9,16,13,5, but several

failed to perform accurate predictions because of their lack of flexibility,

by using crisp instead of fuzzy models for the submotifs (e.g., TATAAT or

TTGACA 24), or restricting distances between submotifs to fixed values

(e.g., 17 base pairs1). The vagueness of the compound promoter motifs and

the uncertainty of identifying which of those predicted sites correspond to a

functional promoter can be completely solved only by performing mutagen-
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esis experiments22. Thus more accurate and interpretable predictions would

be useful in order to reduce the experiment costs and ease the researchers

work.

4. Biological Sequence Description Methods

In this paper we present results of the application of GAP to the discovery

of interesting qualitative features in DNA sequences based inthose ideas

discussed in Section 2. The notion of interesting feature is formally defined

by means of a family of parameterized models M = {Mα} specified by

domain experts29 who are interested in finding patterns such as epoch de-

scriptors of individual or multiple DNA sequences. These idealized versions

of prototypical models are the basis for a characterization of clusters as

cohesive sets that is more general than their customary interpretation as

“subsets of close points.” To address the promoter prediction problem we

take advantage of the ability of representing imprecise and incomplete mo-

tifs, the fuzzy sets representations flexibility and interpretability, and the

multi-objective genetic algorithms ability to obtain optimal solutions using

different criteria.

Our proposed method GAP represents each promoter submotif (i.e., -

10 and -35 regions and the distance that separates them) as fuzzy models,

whose membership functions are learned from data distributions15,21. In

addition, as a generalized clustering method, GAP considers the quality of

matching with each promoter submotif model (Q), as well as the size of

the promoter extend (S ), by means of the distance between submotifs, as

the multiple objectives to be optimized. To do so, we used a Multi-objective

Scatter Search (MOSS) optimitation algorithm 18,12, which obtains a set

of multiple and optimal promoter descriptions for each promoter region.

Moreover, the former matching is also considered by MOSS as a multi-

modal problem, since there is more than one solution for each region. GAP,

by using MOSS, overcomes other methods used for DNA motif discov-

ery, such as Consensus/Patser based on weight probabilistic matrices (see

Section 5), and provides the desired trade-off between accurate and inter-

pretable solutions, which becomes particurary desirable for the end users.

The extension of the original Scatter Search (SS) heuristic 18 uses the DNA

regions where promoters should be detected as inputs and finds all optimal

relationships among promoter submotifs and distance models. In order to

extend the original SS algorithm to a multi-objective environment we need
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to introduce some concepts10,25:

A multi-objective optimization problem is defined as:

Maximize Qm(x,Mα), m = 1, 2, . . . , |M |;

subject to gj(x) ≥ 0, jg = 1, 2, . . . , J ;

hk(x) = 0, k = 1, 2, . . . ,K;

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2, . . . , n.



















where Mα is a generalized clustering model, |M | corresponds to the number

of models and Qm the objectives to optimize, J to the number of inequal-

ity constraints, K to the number of equality constraints and finally n is

the number of decision variables. The last set of constraints restrict each

decision variable xi to take a value within a lower x
(L)
i and an upper x

(U)
i

bound. Specifically, we consider the following instantiations:

• |M | = 3. We have three models: M 1
α and M2

α are the models for

each of the boxes,TTGACA-box and TATAAT-box, respectively, and

M3
α corresponds to the distance between these two boxes (recall Equa-

tions 1 and 2, and Figure 1).

• |Q| = 3. We have three objectives consisting of maximizing

the degree of matching to the fuzzy models (fuzzy membership):

Q1(x,M1
α), Q2(x,M2

α) and Q3(x,M3
α)

• J = 1. We have just one constraint g1: the distance between boxes can

not be less than 15 and no more than 21 pair of bases.

• K = 0. No equality constraints needed.

• Only valid solutions are kept in each generation.

• The boxes can not be located outside the sequence searched, that is,

it can not start at negative positions or grater than the length of the

query sequence.

Definition 1: A solution x is said to dominate solution y (x ≺ y), if

both conditions 1 and 2 are true: (1) The solution x is no worse than y

in all objectives: fi(x) 7 fi(y) for all i = 1, 2, . . . ,M ; (2) The solution x

is strictly better than y in at least one objective: fj(x) / fj(y) for at least

one i ∈ {1, 2, . . . ,M}. If x dominates the solution y it is also customary to

write that x is nondominated by y.

In order to code the algorithm, three different models were developed.

Both submotif models were implemented by using their nucleotide con-

sensus frequency as discrete fuzzy sets, whose membership function has
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been learned from distributions15 The first model corresponding to the

TATAAT-box was formulated as:

M1
α = µtataat(x) = µ1

1(x1) ∪ ... ∪ µ1
6(x) (1)

where the fuzzy discrete set corresponding to the first nucleotide of the

submotif T0.77A0.76T0.60A0.61A0.56T0.82 was defined as µ1
1(x1) = A/0.08 +

T/0.77 + G/0.12 + C/0.05, and the other fuzzy sets corresponding to po-

sitions 2-6 were calculated in a similar way accordingly to data distribu-

tions from17. The second model corresponding to the TTGACA-box was

described as:

M2
α = µttgaca(x) = µ2

1(x1) ∪ ... ∪ µ2
6(x) (2)

where the fuzzy crisp set corresponding to the first nucleotide of the submo-

tif T0.69T0.79G0.61A0.56C0.54A0.54 was defined as µ2
1(x) = A/0.12+T/0.69+

G/0.13+C/0.06 and the other fuzzy sets corresponding to positions 2-6 were

calculated in a similar way accordingly to data distributions from17. The

union operation corresponds to fuzzy set operations21,15. The third model,

i.e., the distance between the previous submotifs, was built as a fuzzy set,

whose triangular membership function M 3
α (see Figure 1) was learned from

data distributions5 centered in 17, where the best value (one) is achieved.

Therefore, the objective functions Qm correspond to the membership to the

former fuzzy models Mα.
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Fig. 1. Graphical representation of M3
α

Combination Operator and Local Search. We used a block representation

to code each individual, where each block corresponds to one of the pro-

moter submotifs (i.e., TATAAT-box or TTGACA-box). Particularly, each

block was represented by two integers, where the first number corresponds
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to the starting point of the submotif, and the second one represents the

size of the box (see Figure 2). The combination process was implemented

Phenotype

ttgaca tataat

gtttatttaatgtttacccccataaccacataatcgcgttacact

↑ ↑

char 6 char 29

Genotype

Gen 0 Gen 1

[(6,6)] [(29,6)]

f1 = 0.578595 f2 = 0.800000 f3 = 1.000000

Fig. 2. Example of the representation of an individual

as a one-point combine operator, where the point is always located between

both blocks. For example, given chromosomes with two blocks A and B, and

parents P = A1B1 and P ′ = A2B2, the corresponding siblings would be

S = A1B2 and S′ = A2B1. The local search was implemented as a search

for nondominated solutions in a certain neighborhood. For example, a local

search performed over the chromosome space involves a specified number

of nucleotides located on the left or right sides of the blocks composing

the chromosome. The selection process considers that a new mutated chro-

mosome that dominates one of its parent will replace it, but if it becomes

dominated by its ancestors no modification is performed. Otherwise, if the

new individual is not dominated by the nondominated population found so

far, it replaces its father only if it is located in a less crowded region (see

Figure 3).

Algorithm. We modified the original SS algorithm to allow multiple-

objective solutions by adding the nondominance criterion to the solution

ranking10. Thus, nondominated solutions were added to the set in any or-

der, but dominated solutions were only added if no more nondominated

solutions could be found. In addition to maintaining a good set of non-

dominated solutions, and to avoid one of the most common problems of

multi-objective algorithms such as multi-modality10, we also kept track of

the diversity of the available solutions through all generations. Finally, the

initial populations were created randomly and unfeasible solutions corre-

sponding to out of distance ranges between promoter submotifs (g1) were
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checked at each generation. Figure 4 clearly illustrates the MOSS algorithm

proposed in GAP.

1: Randomly select which block g in the representation of the individual c to apply

local search.

2: Randomly select a number n in [−neighbor, neighbor] and move the block g, n

nucleotides. Notice that it can be moved upstream or downstream. Resulting block

will be g′ and resulting individual will be called c′.

3: if c′ meets the restrictions then

4: if c′ dominates c then

5: Replace c with c′

6: end if

7: if c′ does not dominate c and c′ is not dominated by c and c′ is not dominated

by any solution in the Non-Dominated set then

8: Replace c with c′ if crowd(c′) < crowd(c).
9: end if

10: end if

Fig. 3. Local search

1: Start with P = ∅. Use the generation method to build a solution and the local

search method to improve it. If x /∈ P then add x to P , else, reject x. Repeat until
P has the user specified size.

2: Create a reference set RefSet with b/2 nondominated solutions of P and b/2 solu-
tions of P more diverse from the other b/2. If there are not enough nondominated

solutions to fill the b/2, complete the set with dominated solutions.
3: NewSolution← true

4: while Exists a Solution not yet explored (NewSolution = true) do

5: NewSolution← false

6: Generate subsets of RefSet where there is at least one nondominated solution
in each one.

7: Generate an empty subset N to store nondominated solutions.
8: while subset to examine do

9: Select a subset and mark it as examined.

10: Apply combination operators to the solutions in the set.

11: Apply local search to each new solution x found after the combination process
as explained in Figure 3 and name it xb.

12: if xb is nondominated by any x ∈ N and xb /∈ N then

13: Add xb to N .

14: end if

15: end while

16: Add solutions y ∈ N to P if there are no solution z ∈ P that dominates y.

16: NewSolution← true.
17: end while

Fig. 4. MOSS algorithm



May 14, 2004 13:24 WSPC/Trim Size: 9in x 6in for Review Volume newlibro˙v6

Generalized Analisys of Promoters (GAP): a Method for DNA Sequence Description13

5. Experimental Algorithm Evaluation

The GAP method was applied to a set of known promoter sequences re-

ported in5. In this work 261 promoter regions and 68 the alternative so-

lutions (multiple promoters) defined in5 for the corresponding sequences

(totalizing 329 regions) constituted the input of the method.

To evaluate the performance of GAP, we first compare the obtained re-

sults with the ones retrived by a typical DNA sequence analysis method, the

Consensus/Patser 14. Then, we compare the ability of MOSS with the other

two Multiobjective Evolutionary Algorithms (MOEAs), i.e., the Strength

Pareto Evolutionary Algorithm (SPEA)33 and the (µ + λ) Multi-Objective

Evolutionary Algorithm (MuLambda)20.

All of the former MOEA algorithms share the same following properties:

• They store optimal solutions found during the search in an external

set.

• They work with the concept of Pareto dominance to assign fitness values

to the individuals of the population.

Particularly, SPEA is a well known algorithm that have some special

features 33, including:

• The combination of above techniques in a single algorithm.

• The determination of the fitness value of an individual by using the

solutions stored in the external population, where dominance from the

current population becomes irrelevant.

• All individuals of the external set participate in the selection procedure.

• A niching method is given to preserve diversity in the population. This

method is based on Pareto optimality and does not require a distance

parameter (e.g., the niche ratio in a sharing function10).

MuLambda is a relative new algorithm with a very different design from

other Pareto approaches. This algorithm has the following characteristics20:

• It does not use any information from the dominated individuals of the

population. Only nondominated individuals are kept from generation

to generation.

• The population size is variable.

• It makes clustering to reduce the number of nondominated solutions

stored without destroying the features of the optimal Pareto front.

As we explained earlier, the MOSS approach has the following proper-
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ties:

• The local search is used to improve those solutions found during the

execution of the algorithm.

• The diversity of the solutions is kept by including in every generation

a set of diverse solutions into the current population.

To compare the results obtained from the former three algorithms, we

use the same objective functions described in Section 4 and execute these

algorithms 20 times with different seeds for each input sequence. A promoter

is said to be found if it appears in, at least, one of the execution result sets.

The parameters used in the experiments are listed in Table 1.

Parameter Value

Number of generations 200

RefSet 16

Non-Dominated population size 300

Table 1. Parameters for algorithms

Our method overcomes Consensus/Patser14 by detecting te 93.1 % of the

available promoters, while this method, based on weight matrices, identify

the 74 %. Moreover, GAP, by using MOSS also overcomes the other MOEA

algorithms as it is illustrated in Table 2.

Original Alternative %originals %alternatives Total %total

MOSS 243 59 93.10% 86.76% 302 91.79%

SPEA 217 43 83.14% 63.24% 260 79.03%
(µ + λ) GA 223 52 85.44% 76.47% 275 83.59%

Table 2. Results with different Multi-Objective Genetic Algorithms for all sequences.

The Original column indicates the number of conserved promoter locations reported

in the literature. The Alternative column indicates alternative locations also reported
in the literature

We should note that there exist more than one possible description

for each promoter region, as it is illustrated in Figure 5 for the Ada gene

reported in Harley & Reynolds compilation5. These alternative descriptions

were also found by MOSS in a higher percentage than the other methods

(86.76 %). The complete set of results is illustrated in the Appendix.



May 14, 2004 13:24 WSPC/Trim Size: 9in x 6in for Review Volume newlibro˙v6

Generalized Analisys of Promoters (GAP): a Method for DNA Sequence Description15

Fig. 5. Different solutions for the Ada sequence - Three different alternative locations

for the preserved sequences were included in the final set of the MOSS method matching

with the three alternatives reported in the literature

In addition to the number of promoters detected by using different

MOEA algorithms, we use two other functions C34 and D (see Equations

3 and 4) to have a better understanding of each algorithm performance.

Definition 2: Let X ′, X ′′ ⊆ X two set of decision vectors. The function
C maps the ordered pairs (X ′, X ′′) to the [0, 1] interval:

C(X ′
, X

′′) =
|{a′′ ∈ X ′′; ∃a′ ∈ X ′ : a′ � a′′}|

|X ′′|
(3)

D(X ′
, X

′′) = |{a′ ∈ X
′; a′′ ∈ X

′′ : a
′′ � a

′ ∧ a
′ 6= a

′′}| (4)

The value C(X ′, X ′′) = 1 in the former definitions means that all solu-

tions in X ′′ are equal to or dominated by the solutions in X ′. Its opposite

value, C(X ′, X ′′) = 0, represents the situation where no solutions in X ′′

are covered by any solutions in X ′. Both C(X ′, X ′′) and C(X ′′, X ′) must

be considered since C(X ′, X ′′) it is not necessary equal to 1 − C(X ′′, X ′).

Function D(X ′, X ′′) counts the number of individuals in X ′ that do not

dominate X ′′ and are not found in X ′′.

We show in Table 3 the average results obtained for the comparissons

among the MOEA algorithms. The first Table measures the C(X ′, X ′′),and

the other measures the D(X ′, X ′′). This numbers were obtained by execut-

ing the algorithms 20 times with different seeds and calculating the average

value for both functions and sequences.

C(X′, X′′) MOSS SPEA µ + λ

MOSS - 0.538 0.360

SPEA 0.013 - 0.054

µ + λ 0.029 0.349 -

D(X′, X′′) MOSS SPEA µ + λ

MOSS - 14.204 12.977

SPEA 0.170 - 0.876

µ + λ 1.066 2.284 -

Table 3. Sequence results

As we previously suggested, function D counts the number of nondom-

inated individuals of an algorithm that were not found in the other two
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MOEAs. The MOSS algorithm achieves the best value of D in all experi-

ments, while SPEA and MuLambda present lower values. Moreover those

results obtained by MOSS do not present much fluctuation between dif-

ferent sequences. MOSS leads the rankings followed by MuLambda and

SPEA in the last position of the table. In addition, the diversity of solu-

tions found by MOSS is considerably better than the other two algorithms

(aproximately seven times better according to the D value). Finally, MOSS

becomes the most robust algorithm by finding, in average, a specific pro-

moter 16.81 times of the 20 runs. In contrast, SPEA obtains a promoter

6.48 times of the total 20 runs and and MuLambda 9.33 of the times.

6. Concluding Remarks

Generalized-clustering algorithms—solving multivariable, multiobjective,

optimization problems—provide effective tools to identify interesting fea-

tures that help to understand complex objects such as DNA sequences. We

have proposed GAP, a promoter recognition method that was tested by

predicting E.coli promoters. This method combines the advantages of fea-

ture representation based on fuzzy sets and the searching abilities of multi-

objective genetic algorithms to obtain accurate as well as interpretable so-

lutions. Particularly, these kinds of solutions are the most useful ones for

the end users. That is, allows to detect multiple occurrences of promoters,

sheding light on different putative transcription start sites. The ability of

finding multiple promoters becomes more useful when the whole intergenic

regions are considered, allowing to predict distinct regulatory activities,

harboring activation or repression. The present approach can be extended

to identify other DNA motifs, which are also conected by variable distances,

such as binding sites of transcriptional regulators (e.g., direct or inverted

repeats). Therefore, by combining multiple and heterogeneous DNA motifs

(e.g., promoters, binding sites, etc.), we can obtain different descriptions

of the cis-acting regions and, thus, different regulatory environments. The

present implementation of GAP is available for academic use in the SOAR-

TOOLS web site (http://soar-tools.wustl.edu) and will be updated soon

with a new dataset from RegulonDB database31 (in process).

Appendix

Tables 4 through 7 illustrate the set of solutions found by GAP by consid-

ering the set of promoter examples published in 5. The last column of the

tables indicates whether the GAP recognized the promoter or not by the
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simbols X and �, respectively. The first column corresponds to the name

of the sequence, the second column shows the beginning character position

of the TTGACA-box, and the third column shows the character position

where the TATAAT-box begins. These positions are those ones recognized

by GAP. Only one result for each sequence is shown due to space limita-

tions. The fourth column corresponds to the sequence itself with each of

the boxes clearly depicted.
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sequence ttgaca tataat promoter found

aceEF 13 36 ACGTAGACCTGT CTTATT GAGCTTTC CGGCGAGAG TTCAAT GGGACAGGTCCAG X

ada – – AGCGGCTAAAGGTG TTGACG TGCGAGAA ATGTTTAGC TAAACT TCTCTCATGTG �

alaS 15 39 AACGCATACGGTAT TTTACC TTCCCAGTC AAGAAAACT TATCTT ATTCCCACTTTTCAGT X

ampC 15 37 TGCTATCCTGACAG TTGTCA CGCTGATT GGTGTCGT TACAAT CTAACGCATCGCCAATG X

ampC/C16 7 30 GCTATC TTGACA GTTGTCAC GCTGATTGG TATCGT TACAATCTAACGTATCG X

araBAD 15 37 TTAGCGGATCCTAC CTGACG CTTTTTAT CGCAACTC TCTACT GTTTCTCCATACCCGTT X

araC 15 38 GCAAATAATCAATG TGGACT TTTCTGCC GTGATTATA GACACT TTTGTTACGCGTTTTTG X

araE 12 37 CTGTTTCCGAC CTGACA CCTGCGTGA GTTGTTCACG TATTTT TTCACTATGTCTTACTC X

araI(c) 13 35 AGCGGATCCTAC CTGGCG CTTTTTAT CGCAACTC TCTACT GTTTCTCCATACCCGTT X

araI(c)X(c) 13 37 AGCGGATCCTAC CTGGCG CTTTTTATC GCAACTCTC TACTAT TTCTCCATACCCGTTTT X

argCBH 15 39 TTTGTTTTTCATTG TTGACA CACCTCTGG TCATGATAG TATCAA TATTCATGCAGTATT X

argCBH-P1/6- 15 36 TTTGTTTTTCATTG TTGACA CACCTCT GGTCATAA TATTAT CAATATTCATGCAGTAT X

argCBH-P1/LL 15 36 TTTGTTTTTCATTG TTGACA CACCTCT GGTCATGA TATTAT CAATATTCATGCAGTAT X

argE-P1 15 38 TTACGGCTGGTGGG TTTTAT TACGCTCA ACGTTAGTG TATTTT TATTCATAAATACTGCA X

argE-P2 15 38 CCGCATCATTGCTT TGCGCT GAAACAGT CAAAGCGGT TATGTT CATATGCGGATGGCG X

argE/LL13 15 38 CCGCATCATTGCTT TGCGCT GAAACAGT CAAAGCGGT TATATT CATATGCGGATGGCG X

argF 15 38 ATTGTGAAATGGGG TTGCAA ATGAATAA TTACACATA TAAAGT GAATTTTAATTCAATAA X

argI 7 30 TTAGAC TTGCAA ATGAATAA TCATCCATA TAAATT GAATTTTAATTCATTGA X

argR 12 35 TCGTCGCCGCG TTGCAG GAGCAAGG CTTTGACAA TATTAA TCAGTCTAAAGTCTCGG X

aroF 15 37 TACGAAAATATGGA TTGAAA ACTTTACT TTATGTGT TATCGT TACGTCATCCTCGCTG X

aroG 15 38 AGTGTAAAACCCCG TTTACA CATTCTGA CGGAAGATA TAGATT GGAAGTATTGCATTCA X

aroH 15 37 GTACTAGAGAACTA GTGCAT TAGCTTAT TTTTTTGT TATCAT GCTAACCACCCGGCGAG X

bioA 15 39 GCCTTCTCCAAAAC GTGTTT TTTGTTGTT AATTCGGTG TAGACT TGTAAACCTAAATCT X

bioB 15 38 TTGTCATAATCGAC TTGTAA ACCAAATT GAAAAGATT TAGGTT TACAAGTCTACACCGAA X

bioP98 15 38 TTGTTAATTCGGTG TAGACT TGTAAACC TAAATCTTT TAAATT TGGTTTACAAGTCGAT X

C62.5-P1 – – CACCTGCTCTCGC TTGAAA TTATTCTC CCTTGTCCC CATCTC TCCCACATCCTGTTTT �

carAB-P1 15 38 ATCCCGCCATTAAG TTGACT TTTAGCGC CCATATCTC CAGAAT GCCGCCGTTTGCCAGA X

carAB-P2 15 39 TAAGCAGATTTGCA TTGATT TACGTCATC ATTGTGAAT TAATAT GCAAATAAAGTGAG X

cat 13 36 ACGTTGATCGGC ACGTAA GAGGTTCC AACTTTCAC CATAAT GAAATAAGATCACTACC X

cit.util-379 – – AAACAGGCGGGG GTCTCA GGCGACTAA CCCGCAAAC TCTTAC CTCTATACATAATTCTG �

cit.util-431 14 38 GACAGGCACAGCA TTGTAC GATCAACTG ATTTGTGCC AATAAT TAAATGAAATCAC X

CloDFcloacin 15 37 TCATATATTGACAC CTGAAA ACTGGAGG AGTAAGGT AATAAT CATACTGTGTATATAT X

CloDFnaI 15 39 ACACGCGGTTGCTC TTGAAG TGTGCGCCA AAGTCCGGC TACACT GGAAGGACAGATTTGG X

colE1-B 15 36 TTATAAAATCCTCT TTGACT TTTAAAA CAATAAGT TAAAAA TAAATACTGTAA X

colE1-C 15 37 TTATAAAATCCTCT TTGACT TTTAAAAC AATAAGTT AAAAAT AAATACTGTACATATAA X

colE1-P1 15 38 GGAAGTCCACAGTC TTGACA GGGAAAAT GCAGCGGCG TAGCTT TTATGCTGTATATAAAA X

colE1-P2 15 37 TTTTTAACTTATTG TTTTAA AAGTCAAA GAGGATTT TATAAT GGAAACCGCGGTAGCGT X

colE110.13 13 37 GCTACAGAGTTC TTGAAG TAGTGGCCC GACTACGGC TACACT AGAAGGACAGTATTTGG X

colicinE1 P3 15 37 TTTTTAACTTATTG TTTTAA AAGTCAAA GAGGATTT TATAAT GGAAACCGCGGTAGCGT X

crp 15 38 AAGCGAGACACCAG GAGACA CAAAGCGA AAGCTATGC TAAAAC AGTCAGGATGCTACAG X

cya 15 38 GTAGCGCATCTTTC TTTACG GTCAATCA GCAAGGTGT TAAATT GATCACGTTTTAGACC X

dapD – – AAGTGCATCAGCGG TTGACA GAGGCCCTC AATCCAAAC GATAAA GGGTGATGTGTTTACTG �

deo-P1 14 39 CAGAAACGTTTTA TTCGAA CATCGATCT CGTCTTGTGT TAGAAT TCTAACATACGGTTGC X

deo-P2 10 35 TGATGTGTA TCGAAG TGTGTTGCG GAGTAGATGT TAGAAT ACTAACAAACTCGCAA X

deo-P3 15 37 ACACCAACTGTCTA TCGCCG TATCAGCG AATAACGG TATACT GATCTGATCATTTAAA X

divE 15 38 AAACAAATTAGGGG TTTACA CGCCGCAT CGGGATGTT TATAGT GCGCGTCATTCCGGAAG X

Table 4. Results for the training sequences
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sequence ttgaca tataat promoter found

dnaA-1p 15 39 TGCGGCGTAAATCG TGCCCG CCTCGCGGC AGGATCGTT TACACT TAGCGAGTTCTGGAAA X

dnaA-2p 15 38 TCTGTGAGAAACAG AAGATC TCTTGCGC AGTTTAGGC TATGAT CCGCGGTCCCGATCG X

dnaK-P1 15 39 TTTGCATCTCCCCC TTGATG ACGTGGTTT ACGACCCCA TTTAGT AGTCAACCGCAGTG X

dnaK-P2 15 37 ATGAAATTGGGCAG TTGAAA CCAGACGT TTCGCCCC TATTAC AGACTCACAACCACA X

dnaQ-P1 15 37 GCCAGCGCTAAAGG TTTTCT CGCGTCCG CGATAGCG TAAAAT AGCGCCGTAACCCC X

Fpla-oriTpX 15 38 GAACCACCAACCTG TTGAGC CTTTTTGT GGAGTGGGT TAAATT ATTTACGGATAAAG X

Fplas-traM 15 38 ATTAGGGGTGCTGC TAGCGG CGCGGTGT GTTTTTTTA TAGGAT ACCGCTAGGGGCGCTG X

Fplas-traY/Z 14 37 GCGTTAATAAGGT GTTAAT AAAATATA GACTTTCCG TCTATT TACCTTTTCTGATTATT X

frdABCD 12 34 GATCTCGTCAA ATTTCA GACTTATC GATCAGAC TATACT GTTGTACCTATAAAGGA X

fumA 15 38 GTACTAGTCTCAGT TTTTGT TAAAAAAG TGTGTAGGA TATTGT TACTCGCTTTTAACAGG X

γ-δ-tnpA 15 38 ACACATTAACAGCA CTGTTT TTATGTGT GCGATAATT TATAAT ATTTCGGACGGTTGCA X

γ-δ-tnpR 14 36 ATTCATTAACAAT TTTGCA ACCGTCCG AAATATTA TAAATT ATCGCACACATAAAAAC X

gal-P1 15 38 TCCATGTCACACTT TTCGCA TCTTTGTT ATGCTATGG TTATTT CATACCATAAG X

gal-P2 15 37 CTAATTTATTCCAT GTCACA CTTTTCGC ATCTTTGT TATGCT ATGGTTATTTCATACC X

gal-P2/mut-1 14 36 TAATTTATTCCAT GTCACA CTTTTCGC ATCTTTGT TATACT ATGGTTATTTCATAC X

gal-P2/mut-2 14 36 TAATTTATTCCAT GTCACA CTTTTCGC ATTTTTGT TATGCT ATGGTTATTTCATAC X

glnL 15 40 CAATTCTCTGATGC TTCGCG CTTTTTATC CGTAAAAAGC TATAAT GCACTAAATGGTGC X

gln 15 38 TAAAAAACTAACAG TTGTCA GCCTGTCC CGCTTATAA GATCAT ACGCCGTTATACGTT X

gltA-P1 15 37 ATTCATTCGGGACA GTTATT AGTGGTAG ACAAGTTT AATAAT TCGGATTGCTAAGTA X

gltA-P2 15 39 AGTTGTTACAAACA TTACCA GGAAAAGCA TATAATGCG TAAAAG TTATGAAGTCGGT X

glyA 15 38 TCCTTTGTCAAGAC CTGTTA TCGCACAA TGATTCGGT TATACT GTTCGCCGTTGTCC X

glyA/geneX 15 39 ACACCAAAGAACCA TTTACA TTGCAGGGC TATTTTTTA TAAGAT GCATTTGAGATACAT X

gnd 15 38 GCATGGATAAGCTA TTTATA CTTTAATA AGTACTTTG TATACT TATTTGCGAACATTCCA X

groE – – TTTTTCCCCC TTGAAG GGGCGAAG CCATCCCCA TTTCTC TGGTCACCAGCCGGGAA �

gyrB 11 38 CGGACGAAAA TTCGAA GATGTTTACCGTGGAAAAGGG TAAAAT AACGGATTAACCCAAGT X

his 14 38 ATATAAAAAGTTC TTGCTT TCTAACGTG AAAGTGGTT TAGGTT AAAAGACATCAGTTGAA X

hisA 15 38 GATCTACAAACTAA TTAATA AATAGTTA ATTAACGCT CATCAT TGTACAATGAACTGTAC X

hisBp 15 38 CCTCCAGTGCGGTG TTTAAA TCTTTGTG GGATCAGGG CATTAT CTTACGTGATCAG X

hisJ(St) 15 37 TAGAATGCTTTGCC TTGTCG GCCTGATT AATGGCAC GATAGT CGCATCGGATCTG X

hisS 15 38 AAATAATAACGTGA TGGGAA GCGCCTCG CTTCCCGTG TATGAT TGAACCCGCATGGCTC X

htpR-P1 15 38 ACATTACGCCACTT ACGCCT GAATAATA AAAGCGTGT TATACT CTTTCCTGCAATGGTT X

htpR-P2 15 39 TTCACAAGCTTGCA TTGAAC TTGTGGATA AAATCACGG TCTGAT AAAACAGTGAATG X

htpR-P3 15 38 AGCTTGCATTGAAC TTGTGG ATAAAATC ACGGTCTGA TAAAAC AGTGAATGATAACCTCGT X

ilvGEDA 15 38 GCCAAAAAATATCT TGTACT ATTTACAA AACCTATGG TAACTC TTTAGGCATTCCTTCGA X

ilvIH-P1 14 37 CTCTGGCTGCCAA TTGCTT AAGCAAGA TCGGACGGT TAATGT GTTTTACACATTTTTTC X

ilvIH-P2 15 38 GAGGATTTTATCGT TTCTTT TCACCTTT CCTCCTGTT TATTCT TATTACCCCGTGT X

ilvIH-P3 14 37 ATTTTAGGATTAA TTAAAA AAATAGAG AAATTGCTG TAAGTT GTGGGATTCAGCCGATT X

ilvIH-P4 15 38 TGTAGAATTTTATT CTGAAT GTCTGGGC TCTCTATTT TAGGAT TAATTAAAAAAATAGAG X

ISlins-PL 15 37 CGAGGCCGGTGATG CTGCCA ACTTACTG ATTTAGTG TATGAT GGTGTTTTTGAGGTGCT X

ISlins-PR 13 36 ATATATACCTTA TGGTAA TGACTCCA ACTTATTGA TAGTGT TTTATGTTCAGATAAT X

IS2I-II 7 30 GATGTC TGGAAA TATAGGGG CAAATCCAC TAGTAT TAAGACTATCACTTATT X

lacI 15 38 GACACCATCGAATG GCGCAA AACCTTTC GCGGTATGG CATGAT AGCGCCCGGAAGAGAGT X

lacP1 15 39 TAGGCACCCCAGGC TTTACA CTTTATGCT TCCGGCTCG TATGTT GTGTGGAATTGTGAGC X

lacP115 14 37 TTTACACTTTATG CTTCCG GCTCGTAT GTTGTGTGG TATTGT GAGCGGATAACAATTT X

lacP2 15 38 AATGTGAGTTAGCT CACTCA TTAGGCAC CCCAGGCTT TACACT TTATGCTTCCGGCTCG X

lep 15 37 TCCTCGCCTCAATG TTGTAG TGTAGAAT GCGGCGTT TCTATT AATACAGACGTTAAT X

leu 2 25 G TTGACA TCCGTTTT TGTATCCAG TAACTC TAAAAGCATATCGCATT X

leultRNA 15 37 TCGATAATTAACTA TTGACG AAAAGCTG AAAACCAC TAGAAT GCGCCTCCGTGGTAGCA X

lex 15 38 TGTGCAGTTTATGG TTCCAA AATCGCCT TTTGCTGTA TATACT CACAGCATAACTGTAT X

livJ 15 38 TGTCAAAATAGCTA TTCCAA TATCATAA AAATCGGGA TATGTT TTAGCAGAGTATGCT X

lpd 7 30 TTGTTG TTTAAA AATTGTTA ACAATTTTG TAAAAT ACCGACGGATAGAACGA X

lpp 15 38 CCATCAAAAAAATA TTCTCA ACATAAAA AACTTTGTG TAATAC TTGTAACGCTACATGGA X

lppP1 13 37 ATCAAAAAAATA TTCTCA ACATAAAAA ACTTTGTGT TATACT TGTAACGCTACATGGA X

lppP2 13 37 ATCAAAAAAATA TTCTCA ACATAAAAA ACTTTGTGT TATAAT TGTAACGCTACATGGA X

lppR1 13 36 ATCAAAAAAATA TTCACA ACATAAAA A ACTTTGT GTAATA CTTGTAACGCTACATGGA X

Mlrna 15 38 ATGCGCAACGCGGG GTGACA AGGGCGCG CAAACCCTC TATACT GCGCGCCGAAGCTGACC X

mac11 14 38 CCCCCGCAGGGAT GAGGAA GGTGGTCGA CCGGGCTCG TATGTT GTGTGGAATTGTGAGC X

mac12 14 38 CCCCCGCAGGGAT GAGGAA GGTCGGTCG ACCGGCTCG TATGTT GTGTGGAATTGTGAGC X

mac21 14 38 CCCCCGCAGGGAT GAGGAA GGTCGACCT TCCGGCTCG TATGTT GTGTGGAATTGTGAGC X

mac3 14 37 CCCCCGCAGGGAT GAGGAA GGTCGGTC GACCGCTCG TATGTT GTGTGGAATTGTGAGCG X

mac31 14 37 CCCCCGCAGGGAT GAGGAA GGTCGGTC GACCGCTCG TATATT GTGTGGAATTGTGAGCG X

malEFG 15 37 AGGGGCAAGGAGGA TGGAAA GAGGTTGC CGTATAAA GAAACT AGAGTCCGTTTAGGTGT X

malK 15 37 CAGGGGGTGGAGGA TTTAAG CCATCTCC TGATGACG CATAGT CAGCCCATCATGAATG X

malPQ 15 38 ATCCCCGCAGGATG AGGAAG GTCAACAT CGAGCCTGG CAAACT AGCGATAACGTTGTGT X

malPQ/A516P1 12 34 ATCCCCGCAGG ATGAGG AGCCTGGC AAACTAGC GATGAT AACGTTGTGTTGAA X

malPQ/A516P2 15 39 ATCCCCGCAGGAGG ATGAGG AGCCTGGCA AACTAGCGA TAACGT TGTGTTGAAAA X

malPQ/A517/A 15 37 CCCCGCAGGATGAG GTCGAG CCTGGCAA ACTAGCGA TAACGT TGTGTTGAAAA X

malPQ/Pp12 – – ATCCCCGCAGGAT GAGGAA GGTCAACA TCGAGCCTG GAAAAC TAGCGATAACGTTGTGT �

malPQ/Pp13 14 38 ATCCCCGCAGGAT TAGGAA GGTCAACAT CGAGCCTGG CAAACT AGCGATAACGTTGTGT X

malPQ/Pp14 14 37 ATCCCCGCAGGAT GAGGAA GGTCAACA TCGAGCCTG GAAACT AGCGATAACGTTGTGT X

malPQ/Pp15 14 38 ATCCCCGCAGGAT GAGAAA GGTCAACAT CGAGCCTGG CAAACT AGCGATAACGTTGTGT X

malPQ/Pp16 15 38 ATCCCCGCAGGATA AGGAAG GTCAACAT CGAGCCTGG CAAACT AGCGATAACGTTGTGT X

malPQ/Pp18 15 38 ATCCCCGCAGGATG GGGAAG GTCAACAT CGAGCCTGG CAAACT AGCGATAACGTTGTGT X

malT 15 37 GTCATCGCTTGCAT TAGAAA GGTTTCTG GCCGACCT TATAAC CATTAATTACG X

manA 15 38 CGGCTCCAGGTTAC TTCCCG TAGGATTC TTGCTTTAA TAGTGG GATTAATTTCCACATTA X

metA-P1 15 38 TTCAACATGCAGGC TCGACA TTGGCAAA TTTTCTGGT TATCTT CAGCTATCTGGATGT X

metA-P2 15 38 AAGACTAATTACCA TTTTCT CTCCTTTT AGTCATTCT TATATT CTAACGTAGTCTTTTCC X

metBL 12 35 TTACCGTGACA TCGTGT AATGCACC TGTCGGCGT GATAAT GCATATAATTTTAACGG X

metF 8 31 TTTTCGG TTGACG CCCTTCGG CTTTTCCTT CATCTT TACATCTGGACG X

Table 5. Results for the training sequences
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micF 15 37 GCGGAATGGCGAAA TAAGCA CCTAACAT CAAGCAAT AATAAT TCAAGGTTAAAATCAAT X

motA 15 39 GCCCCAATCGCGCG TTAACG CCTGACGAC TGAACATCC TGTCAT GGTCAACAGTGGA X

MuPc-1 6 33 AAATT TTGAAA AGTAACTTTATAGAAAAGAAT AATACT GAAAAGTCAATTTGGTG X

MuPc-2 9 32 GGAACACA TTTAAA AACCCTCC TAAGTTTTG TAATCT ATAAAGTTAGCAATTTA X

MuPe 15 38 TACCAAAAAGCACC TTTACA TTAAGCTT TTCAGTAAT TATCTT TTTAGTAAGCTAGCTA X

NR1rnaC 15 39 GTCACAATTCTCAA GTCGCT GATTTCAAA AAACTGTAG TATCCT CTGCGAAACGATCCCT X

NR1rnaC/m 15 38 TCACAATTCTCAAG TTGCTG ATTTCAAA AAACTGTAG TATCCT CTGCGAAACGATCCCT X

NTP1rna100 11 35 GGAGTTTGTC TTGAAG TTATGCACC TGTTAAGGC TAAACT GAAAGAACAGATTTTGT X

nusA 7 30 CAGTAT TTGCAT TTTTTACC CAAAACGAG TAGAAT TTGCCACGTTTCAGGCG X

ompA 12 34 GCCTGACGGAG TTCACA CTTGTAAG TTTTCAAC TACGTT GTAGACTTTAC X

ompC 15 38 GTATCATATTCGTG TTGGAT TATTCTGC ATTTTTGGG GAGAAT GGACTTGCCGACTG X

ompF 7 30 GGTAGG TAGCGA AACGTTAG TTTGAATGG AAAGAT GCCTGCAGACACATAAA X

ompF/pKI217 3 26 GG TAGCGA AACGTTAG TTTGCAAGC TTTAAT GCGGTAGTTTATCAC X

ompR 15 36 TTTCGCCGAATAAA TTGTAT ACTTAAG CTGCTGTT TAATAT GCTTTGTAACAATTT X

p15primer 15 38 ATAAGATGATCTTC TTGAGA TCGTTTTG GTCTGCGCG TAATCT CTTGCTTGAAAACGAAA X

p15rnaI 15 39 TAGAGGAGTTAGTC TTGAAG TCATGCGCC GGTTAAGGC TAAACT GAAAGGACAAGTTTTG X

P22ant 15 38 TCCAAGTTAGTGTA TTGACA TGATAGAA GCACTCTAC TATATT CTCAATAGGTCCACGG X

P22mnt 15 38 CCACCGTGGACCTA TTGAGA ATATAGTA GAGTGCTTC TATCAT GTCAATACACTAACTT X

P22PR 15 37 CATCTTAAATAAAC TTGACT AAAGATTC CTTTAGTA GATAAT TTAAGTGTTCTTTAAT X

P22PRM 9 32 AAATTATC TACTAA AGGAATCT TTAGTCAAG TTTATT TAAGATGACTTAACTAT X

pBR313Htet 12 35 AATTCTCATGT TTGACA GCTTATCA TCGATAAGC TAGCTT TAATGCGGTAGTTTAT X

pColViron-P1 15 38 TCACAATTCTCAAG TTGATA ATGAGAAT CATTATTGA CATAAT TGTTATTATTTTAC X

pColViron-P2 13 35 TGTTTCAACACC ATGTAT TAATTGTG TTTATTTG TAAAAT TAATTTTCTGACAATAA X

pEG3503 6 30 CTGGC TGGACT TCGAATTCA TTAATGCGG TAGTTT ATCACAGTTAA X

phiXA 15 38 AATAACCGTCAGGA TTGACA CCCTCCCA ATTGTATGT TTTCAT GCCTCCAAATCTTGGA X

phiXB 15 39 GCCAGTTAAATAGC TTGCAA AATACGTGG CCTTATGGT TACAGT ATGCCCATCGCAGTT X

phiXD 15 39 TAGAGATTCTCTTG TTGACA TTTTAAAAG AGCGTGGAT TACTAT CTGAGTCCGATGCTGTT X

lambdac17 15 38 GGTGTATGCATTTA TTTGCA TACATTCA ATCAATTGT TATAAT TGTTATCTAAGGAAAT X

lambdacin 15 38 TAGATAACAATTGA TTGAAT GTATGCAA ATAAATGCA TACACT ATAGGTGTGGTTTAAT X

lambdaL57 14 37 TGATAAGCAATGC TTTTTT ATAATGCC AACTTAGTA TAAAAT AGCCAACCTGTTCGACA X

lambdaPI 15 38 CGGTTTTTTCTTGC GTGTAA TTGCGGAG ACTTTGCGA TGTACT TGACACTTCAGGAGTG X

lambdaPL 15 38 TATCTCTGGCGGTG TTGACA TAAATACC ACTGGCGGT GATACT GAGCACATCAGCAGGA X

lambdaPo 15 38 TACCTCTGCCGAAG TTGAGT ATTTTTGC TGTATTTGT CATAAT GACTCCTGTTGATAGAT X

lambdaPR 15 38 TAACACCGTGCGTG TTGACT ATTTTACC TCTGGCGGT GATAAT GGTTGCATGTACTAAG X

lambdaPR’ 15 38 TTAACGGCATGATA TTGACT TATTGAAT AAAATTGGG TAAATT TGACTCAACGATGGGTT X

lambdaPRE 15 39 GAGCCTCGTTGCGT TTGTTT GCACGAACC ATATGTAAG TATTTC CTTAGATAACAAT X

lambdaPRM 15 38 AACACGCACGGTGT TAGATA TTTATCCC TTGCGGTGA TAGATT TAACGTATGAGCACAA X

pBR322bla 15 38 TTTTTCTAAATACA TTCAAA TATGTATC CGCTCATGA GACAAT AACCCTGATAAATGCT X

pBR322P4 15 42 CATCTGTGCGGTAT TTCACA CCGCATATGGTGCACTCTCAG TACAAT CTGCTCTGATGCCGCAT X

pBR322primer 15 38 ATCAAAGGATCTTC TTGAGA TCCTTTTT TTCTGCGCG TAATCT GCTGCTTGCAAACAAAA X

pBR322tet 15 38 AAGAATTCTCATGT TTGACA GCTTATCA TCGATAAGC TTTAAT GCGGTAGTTTATCACA X

pBRH4-25 4 27 TCG TTTTCA AGAATTCA TTAATGCGG TAGTTT ATCACAGTTAA X

pBRP1 15 42 TTCATACACGGTGC CTGACT GCGTTAGCAATTTAACTGTGA TAAACT ACCGCATTAAAGCTTA X

pBRRNAI 15 39 GTGCTACAGAGTTC TTGAAG TGGTGGCCT AACTACGGC TACACT AGAAGGACAGTATTTG X

pBRtet-10 15 38 AAGAATTCTCATGT TTGACA GCTTATCA TCGATGCGG TAGTTT ATCACAGTTAA X

pBRtet-15 15 38 AAGAATTCTCATGT TTGACA GCTTATCA TCGGTAGTT TATCAC AGTTAAATTGC X

pBRtet-22 15 39 AAGAATTCTCATGT TTGACA GCTTATCAT CGATCACAG TTAAAT TGCTAACGCAG X

pBRtet/TA22 10 33 TTCTCATGT TTGACA GCTTATCA TCGATAAGC TAAATT TTATATAAAATTTAGCT X

pBRtet/TA33 10 33 TTCTCATGT TTGACA GCTTATCA TCGATAAGC TAAATT TATATAAAATTTTATAT X

pori-I 15 38 CTGTTGTTCAGTTT TTGAGT TGTGTATA ACCCCTCAT TCTGAT CCCAGCTTATACGGT X

pori-r – – GATCGCACGATCTG TATACT TATTTGAGT AAATTAACC CACGAT CCCAGCCATTCTTCTGC �

ppc – – CGATTTCGCAGCAT TTGACG TCACCGCT TTTACGTGG CTTTAT AAAAGACGACGAAAA �

pSC101oriP1 3 30 TT TTGTAG AGGAGCAAACAGCGTTTGCGA CATCCT TTTGTAATACTGCGGAA X

pSC101oriP2 8 30 ATTATCA TTGACT AGCCCATC TCAATTGG TATAGT GATTAAAATCACCTAGA X

pSC101oriP3 15 38 ATACGCTCAGATGA TGAACA TCAGTAGG GAAAATGCT TATGGT GTATTAGCTAAAGC X

pyrB1-P1 15 37 CTTTCACACTCCGC CCTATA AGTCGGAT GAATGGAA TAAAAT GCATATCTGATTGCGTG X

pyrB1-P2 13 36 TTGCATCAAATG CTTGCG CCGCTTCT GACGATGAG TATAAT GCCGGACAATTTGCCGG X

pyrD 15 38 TTGCCGCAGGTCAA TTCCCT TTTGGTCC GAACTCGCA CATAAT ACGCCCCCGGTTTG X

pyrE-P1 15 38 ATGCCTTGTAAGGA TAGGAA TAACCGCC GGAAGTCCG TATAAT GCGCAGCCACATTTG X

pyrE-P2 14 38 GTAGGCGGTCATA CTGCGG ATCATAGAC GTTCCTGTT TATAAA AGGAGAGGTGGAAGG X

R100rna3 15 39 GTACCGGCTTACGC CGGGCT TCGGCGGTT TTACTCCTG TATCAT ATGAAACAACAGAG X

R100RNAI 15 38 CACAGAAAGAAGTC TTGAAC TTTTCCGG GCATATAAC TATACT CCCCGCATAGCTGAAT X

R100RNAII 15 38 ATGGGCTTACATTC TTGAGT GTTCAGAA GATTAGTGC TAGATT ACTGATCGTTTAAGGAA X

R1RNAII 15 37 ACTAAAGTAAAGAC TTTACT TTGTGGCG TAGCATGC TAGATT ACTGATCGTTTAAGGAA X

recA 15 37 TTTCTACAAAACAC TTGATA CTGTATGA GCATACAG TATAAT TGCTTCAACAGAACAT X

rnh 15 38 GTAAGCGGTCATTT ATGTCA GACTTGTC GTTTTACAG TTCGAT TCAATTACAGGA X

rn(pRNaseP) 15 38 ATGCGCAACGCGGG GTGACA AGGGCGCG CAAACCCTC TATACT GCGCGCCGAAGCTGACC X

rp1J 15 38 TGTAAACTAATGCC TTTACG TGGGCGGT GATTTTGTC TACAAT CTTACCCCCACGTATA X

rpmH1p 15 38 GATCCAGGACGATC CTTGCG CTTTACCC ATCAGCCCG TATAAT CCTCCACCCGGCGCG X

rpmH2p 15 38 ATAAGGAAAGAGAA TTGACT CCGGAGTG TACAATTAT TACAAT CCGGCCTCTTTAATC X

rpmH3p 15 38 AAATTTAATGACCA TAGACA AAAATTGG CTTAATCGA TCTAAT AAAGATCCCAGGACG X

rpoA 15 38 TTCGCATATTTTTC TTGCAA AGTTGGGT TGAGCTGGC TAGATT AGCCAGCCAATCTTT X

rpoB 15 37 CGACTTAATATACT GCGACA GGACGTCC GTTCTGTG TAAATC GCAATGAAATGGTTTAA X

rpoD-Pa 13 36 CGCCCTGTTCCG CAGCTA AAACGCAC GACCATGCG TATACT TATAGGGTTGC X

rpoD-Pb 9 33 AGCCAGGT CTGACC ACCGGGCAA CTTTTAGAG CACTAT CGTGGTACAAAT X

rpoD-Phs 13 36 ATGCTGCCACCC TTGAAA AACTGTCG ATGTGGGAC GATATA GCAGATAAGAA X

rpoD-Phs/min – – CCC TTGAAA AACTGTCGATGTGGGACGATA TAGCAG ATAAGAATATTGCT �

rrn4.5S 14 37 GGCACGCGATGGG TTGCAA TTAGCCGG GGCAGCAGT GATAAT GCGCCTGCGCGTTGGTT X

rrnABP1 15 37 TTTTAAATTTCCTC TTGTCA GGCCGGAA TAACTCCC TATAAT GCGCCACCACTGACACG X

Table 6. Results for the training sequences
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rrnABP2 15 37 GCAAAAATAAATGC TTGACT CTGTAGCG GGAAGGCG TATTAT GCACACCCCGCGCCGC X

rrnB-P3 14 40 CTATGATAAGGAT TACTCA TCTTATCCTT ATCAAACCGT TAAAAT GGGCGGTGTGAGCTTG X

rrnB-P4 15 36 GCGTATCCGGTCAC CTCTCA CCTGACA GTTCGTGG TAAAAT AGCCAACCTGTTCGACA X

rrnDEXP2 15 37 CCTGAAATTCAGGG TTGACT CTGAAAGA GGAAAGCG TAATAT ACGCCACCTCGCGACAG X

rrnD-P1 15 37 GATCAAAAAAATAC TTGTGC AAAAAATT GGGATCCC TATAAT GCGCCTCCGTTGAGACG X

rrnE-P1 15 37 CTGCAATTTTTCTA TTGCGG CCTGCGGA GAACTCCC TATAAT GCGCCTCCATCGACACG X

rrnG-P1 15 37 TTTATATTTTTCGC TTGTCA GGCCGGAA TAACTCCC TATAAT GCGCCACCACTGACACG X

rrnG-P2 15 37 AAGCAAAGAAATGC TTGACT CTGTAGCG GGAAGGCG TATTAT GCACACCGCCGCGCCG X

rrnX1 15 37 ATGCATTTTTCCGC TTGTCT TCCTGAGC CGACTCCC TATAAT GCGCCTCCATCGACACG X

RSFprimer 15 38 GGAATAGCTGTTCG TTGACT TGATAGAC CGATTGATT CATCAT CTCATAAATAAAGAA X

RSFrnaI 15 39 TAGAGGAGTTTGTC TTGAAG TTATGCACC TGTTAAGGC TAAACT GAAAGAACAGATTTTG X

S10 15 37 TACTAGCAATACGC TTGCGT TCGGTGGT TAAGTATG TATAAT GCGCGGGCTTGTCGT X

sdh-P1 14 37 ATATGTAGGTTAA TTGTAA TGATTTTG TGAACAGCC TATACT GCCGCCAGTCTCCGGAA X

sdh-P2 15 37 AGCTTCCGCGATTA TGGGCA GCTTCTTC GTCAAATT TATCAT GTGGGGCATCCTTACCG X

spc 15 38 CCGTTTATTTTTTC TACCCA TATCCTTG AAGCGGTGT TATAAT GCCGCGCCCTCGATA X

spot42r 15 37 TTACAAAAAGTGCT TTCTGA ACTGAACA AAAAAGAG TAAAGT TAGTCGCGTAGGGTACA X

ssb 15 39 TAGTAAAAGCGCTA TTGGTA ATGGTACAA TCGCGCGTT TACACT TATTCAGAACGATTTT X

str 15 38 TCGTTGTATATTTC TTGACA CCTTTTCG GCATCGCCC TAAAAT TCGGCGTCCTCATAT X

sucAB 15 39 AAATGCAGGAAATC TTTAAA AACTGCCCC TGACACTAA GACAGT TTTAAAAGGTTCCTT X

supB-E 15 38 CCTTGAAAAAGAGG TTGACG CTGCAAGG CTCTATACG CATAAT GCGCCCCGCAACGCCGA X

T7-A1 15 38 TATCAAAAAGAGTA TTGACT TAAAGTCT AACCTATAG GATACT TACAGCCATCGAGAGGG X

T7-A3 15 38 GTGAAACAAAACGG TTGACA ACATGAAG TAAACACGG TACGAT GTACCACATGAAACGAC X

T7-C 15 38 CATTGATAAGCAAC TTGACG CAATGTTA ATGGGCTGA TAGTCT TATCTTACAGGTCATC X

T7-D 15 38 CTTTAAGATAGGCG TTGACT TGATGGGT CTTTAGGTG TAGGCT TTAGGTGTTGGCTTTA X

T7A2 15 39 ACGAAAAACAGGTA TTGACA ACATGAAGT AACATGCAG TAAGAT ACAAATCGCTAGGTAAC X

T7E 11 34 CTTACGGATG ATGATA TTTACACA TTACAGTGA TATACT CAAGGCCACTACAGATA X

TAC16 10 32 AATGAGCTG TTGACA ATTAATCA TCGGCTCG TATAAT GTGTGGAATTGTG X

Tn10Pin 9 33 TCATTAAG TTAAGG TGGATACAC ATCTTGTCA TATGAT CAAATGGTTTCGCGAAA X

Tn10Pout 15 38 AGTGTAATTCGGGG CAGAAT TGGTAAAG AGAGTCGTG TAAAAT ATCGAGTTCGCACATC X

Tn10tetA 15 39 ATTCCTAATTTTTG TTGACA CTCTATCAT TGATAGAGT TATTTT ACCACTCCCTATCAGT X

Tn10tetR 15 39 TATTCATTTCACTT TTCTCT ATCACTGAT AGGGAGTGG TAAAAT AACTCTATCAATGATA X

Tn10tetR* 11 34 TGATAGGGAG TGGTAA AATAACTC TATCAATGA TAGAGT GTCAACAAAAATTAGG X

Tn10xxxP1 15 37 TTAAAATTTTCTTG TTGATG ATTTTTAT TTCCATGA TAGATT TAAAATAACATACC X

Tn10xxxP2 15 38 AAATGTTCTTAAGA TTGTCA CGACCACA TCATCATGA TACCAT AAACATACTGACGG X

Tn10xxxP3 11 38 CCATGATAGA TTTAAA ATAACATACCGTCAGTATGTT TATGGT ATCATGATGATGTGGTC X

Tn2660bla-P3 15 38 TTTTTCTAAATACA TTCAAA TATGTATC CGCTCATGA GACAAT AACCCTGATAAATGCT X

Tn2661bla-Pa 15 38 GGTTTATAAAATTC TTGAAG ACGAAAGG GCCTCGTGA TACGCT TATTTTTATAGGTTAA X

Tn2661bla-Pb 5 28 CCTC GTGATA CGCTTATT TTTATAGGT TAATGT CATGATAATAATGGTTT X

Tn501mer 14 39 TTTTCCATATCGC TTGACT CCGTACATG AGTACGGAAG TAAGGT TACGCTATCCAATTTC X

Tn501merR 15 37 CATGCGCTTGTCCT TTCGAA TTGAAATT GGATAGCG TAACCT TACTTCCGTACTCA X

Tn5TR 15 38 TCCAGGATCTGATC TTCCAT GTGACCTC CTAACATGG TAACGT TCATGATAACTTCTGCT X

Tn5neo 15 38 CAAGCGAACCGGAA TTGCCA GCTGGGGC GCCCTCTGG TAAGGT TGGGAAGCCCTGCAA X

Tn7-PLE 15 38 ACTAGACAGAATAG TTGTAA ACTGAAAT CAGTCCAGT TATGCT GTGAAAAAGCAT X

tnaA 15 37 AAACAATTTCAGAA TAGACA AAAACTCT GAGTGTAA TAATGT AGCCTCGTGTCTTGCG X

tonB 15 39 ATCGTCTTGCCTTA TTGAAT ATGATTGCT ATTTGCATT TAAAAT CGAGACCTGGTTT X

trfA 15 39 AGCCGCTAAAGTTC TTGACA GCGGAACCA ATGTTTAGC TAAACT AGAGTCTCCTT X

trfB 15 38 AGCGGCTAAAGGTG TTGACG TGCGAGAA ATGTTTAGC TAAACT TCTCTCATGTG X

trp 15 38 TCTGAAATGAGCTG TTGACA ATTAATCA TCGAACTAG TTAACT AGTACGCAAGTTCACGT X

trpP2 15 38 ACCGGAAGAAAACC GTGACA TTTTAACA CGTTTGTTA CAAGGT AAAGGCGACGCCGCCC X

trpR 15 39 TGGGGACGTCGTTA CTGATC CGCACGTTT ATGATATGC TATCGT ACTCTTTAGCGAGTACA X

trpS 15 38 CGGCGAGGCTATCG ATCTCA GCCAGCCT GATGTAATT TATCAG TCTATAAATGACC X

trxA 15 39 CAGCTTACTATTGC TTTACG AAAGCGTAT CCGGTGAAA TAAAGT CAACTAGTTGGTTAA X

tufB 15 38 ATGCAATTTTTTAG TTGCAT GAACTCGC ATGTCTCCA TAGAAT GCGCGCTACTTGATGCC X

tyrT 15 37 TCTCAACGTAACAC TTTACA GCGGCGCG TCATTTGA TATGAT GCGCCCCGCTTCCCGAT X

tyrT/109 15 39 ACAGCGCGTCTTTG TTTACG GTAATCGAA CGATTATTC TTTAAT CGCCAGCAAAAATAA X

tyrT/140 – – TTAAGTCGTCACTA TACAAA GTACTGGCA CAGCGGGTC TTTGTT TACGGTAATCG �

tyrT/178 13 34 TGCGCGCAGGTC GTGACG TCGAGAA AAACGTCT TAAGTC GTGCACTATACA X

tyrT/212 2 24 C ATGTCG ATCATACC TACACAGC TGAAGA TATGATGCGCGCAGGTCGTGACG X

tyrT/6 – – ATTTTTCTCAAC GTAACA CTTTACAG GCGCGTCA TTTGAT ATGATGCGCCCCGCTTC �

tyrT/77 13 38 ATTATTCTTTAA TCGCCA GCAAAAATA ACTGGTTACC TTTAAT CCGTTACGGATGAAAAT X

uncI 15 37 TGGCTACTTATTGT TTGAAA TCACGGGG GCGCACCG TATAAT TTGACCGCTTTTTGAT X

uvrB-P1 15 38 TCCAGTATAATTTG TTGGCA TAATTAAG TACGACGAG TAAAAT TACATACCTGCCCGC X

uvrB-P2 15 39 TCAGAAATATTATG GTGATG AACTGTTTT TTTATCCAG TATAAT TTGTTGGCATAATTAA X

uvrB-P3 15 38 ACAGTTATCCACTA TTCCTG TGGATAAC CATGTGTAT TAGAGT TAGAAAACACGAGGCA X

uvrC 15 38 GCCCATTTGCCAGT TTGTCT GAACGTGA ATTGCAGAT TATGCT GATGATCACCAAGG X

uvrD 15 37 TGGAAATTTCCCGC TTGGCA TCTCTGAC CTCGCTGA TATAAT CAGCAAATCTGTATAT X

434PR 15 38 AAGAAAAACTGTAT TTGACA AACAAGAT ACATTGTAT GAAAAT ACAAGAAAGTTTGTTGA X

434PRM 15 38 ACAATGTATCTTGT TTGTCA AATACAGT TTTTCTTGT GAAGAT TGGGGGTAAATAACAGA X

Table 7. Results for the training sequences


